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SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURE 1: Illustration of conditional probabilities describing the depen-
dencies of two views
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Supplementary Figure 1: Illustration of conditional probabilities describing the dependencies of two views.
(a) illustrates the conditional independence of two observed distributions φ1(x1) and φ2(x2) if it is known that
the event ξ = ξ′ on the underlying distribution ψ(ξ) occured. Given ξ = ξ′, both distributions are condition-
ally independent, the probability where to expect an observation only depends on ξ = ξ′ and the respective
individual point spread function P (x1|ξ) and P (x2|ξ), i.e. P (x1|ξ, x2) = P (x1|ξ) and P (x2|ξ, x1) = P (x2|ξ).
(b) illustrates the relationship between an observed distribution φ2(x2) and φ1(x1) if the event x1 = x′1 occured.
Solely the ’inverse’ point spread function Q(ξ|x1) defines the probability for any event ξ = ξ′ to have caused the
observation x1 = x′1. The point spread function P (x2|ξ) consecutively defines the probability where to expect a
corresponding observation x2 = x′2 given the probability distribution ψ(ξ).

SUPPLEMENTARY FIGURE 2: The principle of ’virtual’ views and sequential updating
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Supplementary Figure 2: The principle of ’virtual’ views and sequential updating. (a) The classical multi-view
deconvolution1–4 where an update step is computed individually for each view and subsequently combined
into one update of the deconvolved image. (b) Our new derivation considering conditional probabilities between
views. Each individual update step takes into account all other views using virtual views and additionally updates
the deconvolved image individually, i.e. updates are performed sequentially5 and not combined.
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SUPPLEMENTARY FIGURE 3: Illustration of assumption required for incorporating ’virtual’
views without additional computational effort

Supplementary Figure 3: Illustration of assumption in equation 91. (a) shows the difference in the result when
computing (f ∗ g) · (f ∗ h) in red and the approximation f ∗ (g · h) in black for a random one-dimensional input
sequence (f ) and two kernels with σ=3 (g) and σ=2 (h) after normalization. (b) shows the difference when using
the two-dimensional image from supplementary figure 5a as input (f ) and the first two point spread functions
from supplementary figure 5e as kernels (g, h). The upper panel pictures the approximation, the lower panel the
correct computation. Note that for (a,b) the approximation is slightly less blurred. Note that the beads are also
visible in the lower panel when adjusting the brightness/contrast.
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SUPPLEMENTARY FIGURE 4: Performance comparison of the multi-view deconvolution meth-
ods and dependence on the PSF
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Supplementary Figure 4: Performance comparison and dependence on the PSF (a) The convergence time
of the different algorithms until they reach the same average difference to the ground truth image shown in
supplementary figure 5e. (b) The number of iterations required until all algorithms reach the same average
difference to the ground truth image. One ’iteration’ comprises all computional steps until each view contributed
once to update the underlying distribution. Note that our Bayesian-based derivation and the Maximization-
Likelihood Expectation-Maximization1 method perform almost identical (c) The total number of updates of the
underlying distribution until the same average difference is reached. (d) The number of iterations required until
the same difference to the ground truth is achieved using 4 views. The number of iterations is plotted relative
to the angular difference between the input PSFs. An angular difference of 0 degrees refers to 4 identical
PSFs and therefore 4 identical input images, an example of an angular difference of 45 degrees is shown in
supplementary figure 5e. Plots are shown for different types of PSFs. (a-d) y-axis has logarithmic scale, all
computations were performed on a dual-core Intel Core i7 with 2.7Ghz.
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SUPPLEMENTARY FIGURE 5: Images used for analysis and visual performance

Supplementary Figure 5: Images used for analysis and visual performance. (a) The entire ground truth image
used for all analyses shown in the supplement. (b) Reconstruction quality after 301 iterations using optimization
II and sequential updates on 4 input views and PSF’s as shown in (e). (c) Reconstruction quality after 14
iterations for the same input as (b). (d) Line-plot through the image highlighting the deconvolution quality after
301 (b) and 14 (c) iterations compared to the ground truth (a). (e) Magnificantion of a small region of the
ground truth image (a), the 4 input PSF’s and 4 input datasets as well as the results for all algorithms as used
in supplementary figure 4a-c for performance measurements.
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SUPPLEMENTARY FIGURE 6: Effect of noise on the deconvolution results

Supplementary Figure 6: Effect of noise on the deconvolution results. (a) Deconvolved images corresponding to
the points in graph (b) to illustrate the resulting image quality corresponding to a certain correlation coefficient.
(b,c) The resulting cross-correlation between the ground truth image and the deconvolved image depending on
the signal-to-noise ratio in the input images. (b) Poisson noise, (c) Gaussian noise. (d) The cross correlation
between the ground truth image and the deconvolved image at certain iteration steps during the deconvolution
shown for different signal-to-noise ratios (SNR=∞ [no noise], SNR=10, SNR=3.5) and varying parameters of the
Tikhonov regularization (λ=0 [no regularization], λ=0.0006, λ=0.006, λ=0.06). Supplementary figure 7 shows
the corresponding images for all data points in this plot. This graph is based on the Bayesian-based derivation
using sequential updates in order to be able to illustrate the behaviour in early stages of the devonvolution.
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SUPPLEMENTARY FIGURE 7: Intermediate stages of deconvolution results for varying SNR’s
and regularization

Supplementary Figure 7: Intermediate stages of deconvolution results for varying SNR’s and regularization.
(a-c) 1st row shows input data for the PSF in the red box, PSF’s and ground truth, the other rows show the
images at iteration 10, 70 and 130 for varying parameters of the Tikhonov regularization (λ=0 [no regularization],
λ=0.0006, λ=0.006, λ=0.06). (a) Results and input for SNR=∞ (no noise). Here, λ=0 shows best results. (b)
Results and input for SNR=10 (Poisson noise). Small structures like the fluorescent beads close to each other
remain separable. (c) Results and input for SNR=3.5 (Poisson noise). Note that although the beads cannot
be resolved anymore in the input data, the deconvolution produces a reasonable result, visually best for a λ

between 0.0006 and 0.006. This graph as well as based on the Bayesian-based derivation using sequential
updates (see supplementary figure 6d).
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SUPPLEMENTARY FIGURE 8: Quality of deconvolution for imprecise estimation of the PSF
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Supplementary Figure 8: Quality of deconvolution for imprecise estimation of the PSF. The cross-correlation
between the deconvolved image and the ground truth images when the PSF’s used for deconvolution were
rotated by random angles relative to the PSF’s used to create the input images.
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SUPPLEMENTARY FIGURE 9: Comparison to other optimized multi-view deconvolutions

Supplementary Figure 9: Comparison to other optimized multi-view deconvolution schemes. (a,b) Compares
optimized versions of multi-view deconvolution, including the IDL implementations of Scaled Gradient Projec-
tion (SGP),4 Ordered Subset Expectation Maximization (OSEM),5 Maximum a posteriori with Gaussian Noise
(MAPG),6 and our derivations combined with OSEM (see also main text figure 1e,f). All computations were
performed on a machine with 128 GB of RAM and two 2.7 GHz Intel E5-2680 processors. (a) Correlates com-
putation time and image size until the deconvolved image reached the same difference to the known ground truth
image. All algorithms perform relatively proportional, however the IDL implementations run out of memory. (b)
illustrates that our optimizations can also be combined with SGP in order to achieve a faster convergence. (c-h)
compare the reconstruction quality of MAPG and Optimization II using the 7-view acquisition of the Drosophila
embryo expressing His-YFP (main text figure 3c,d,e). Without ground truth we chose a stage of similar sharp-
ness (26 iterations of MAPG and 9 iterations of Optimization II, approximately in correspondence with main
figure 1f) not using any regularization. Optimization II achieves a visually higher image quality, while MAPG
shows some artifacts and enhances the stripe pattern arising from partially overlapping input images. (c,d)
show a slice in lateral orientation of one of the input views, (e-h) show slices perpendicular to the rotation axis.
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SUPPLEMENTARY FIGURE 10: Effects of partial overlap and CUDA performance

a

f

e

0 1

1 2 3.61
0

100

200

300

400  Bayesian-based
 Bayesian-based (OSEM)
 Efficient Bayesian-based (OSEM)
 Optimization 1 (OSEM)
 Optimization 2 (OSEM)

nu
m

be
r o

f i
te

ra
tio

ns

Overlap

g
2 6

0

20

40

 2xIntel E5-2630 (12/24 cores)
 NVIDIA QUADRO 4000
 NVIDIA TESLA C2075
 NVIDIA TESLA K20 (estimated)

co
m

pu
ta

tio
n 

tim
e

[m
in

]
Bayesian-

based (OSEM)

0 1

b
view 0° view 60° view 120° view 180° view 240° view 300°

0 2

c

0 3.61

d

Supplementary Figure 10: Effects of partial overlap and CUDA performance. (a) shows for one slice perpendic-
ular to the rotation axis the weights for each pixel of each view of a six-view SPIM acquistion (see supplementary
figure 14e-j for image data). Every view only covers part of the entire volume. Close to the boundaries of each
view we limit its contribution using a cosine blending function preventing artifacts due to sharp edges.7 For each
individual pixel the sum of weights over all views is normalized to be ≤1. Black corresponds to a weight of 0
(this view is not contributing), white to a weight of 1 (only this view is contributing). (b-d) illustrate how much
each pixel is deconvolved in every iteration when using different amounts of OSEM speedup (i.e. assuming a
certain amount of overlapping views). Note that individual weights must not be >1. (b) normalizing the sum
of all weights to ≤1 results in a uniformly deconvolved image except the corners where the underlying data is
missing, however no speedup is achieved by OSEM (f left). Note that summing up all 6 images from (a) results
in this image. (c) two views is the minimal number of overlapping views at every pixel (see e), so normalization
to ≤2 still provides a pretty uniform deconvolution and a 2-fold speed up (f center). (d) normalizing to ≤3.61
(average number of overlapping views) results in more deconvolution of center parts, which is not desireable.
Many parts of the image are not covered by enough views to achieve a sum of weights of 3.61. (f) performance
improvement of partially overlapping datasets using the weights pictured above and a cropped version of the
ground truth image (supplementary figure 5). The effect is identical to perfectly overlapping views, but the ef-
fective number of overlapping views is reduced. Our new optimizations improve performance in any case. (g)
the relative speed-up of deconvolution performance that can be achieved using our CUDA implementation.
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SUPPLEMENTARY FIGURE 11: Quantification of resolution enhancement by Multi-View De-
convolution

Supplementary Figure 11: Quantification of resolution enhancement by Multi-View Deconvolution. (a-d) com-
pare the average of all fluorescent beads matched by the bead-based registration7 for two input views (a,b),
after multi-view fusion (c), and after multi-view deconvolution (d). The resolution enhancement is apparent, es-
pecially along the rotation axis (third column, yz) between (c) and (d). The dataset used for this analysis is the
7-view acquisition of a developing Drosophila embryo (see main text figure 3c-e), deconvolved for 15 iterations
with λ=0.0006 using Optimization I.
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SUPPLEMENTARY FIGURE 12: Reconstruction quality of an OpenSPIM acquistion

Supplementary Figure 12: Comparison of reconstruction quality on the OpenSPIM. (a) Quality of one of the
input views as acquired by the OpenSPIM microscope. (b) Quality of the content-based fusion of the registered
dataset. (c) Quality of the deconvolution of the registered dataset. (a-c) The first column shows a slice in the
lateral orientation of the input dataset, the second column shows an orthogonal slice, the third column shows
a slice perpendicular to the rotation axis. All slices are in the exactly same position and show the identical
portion of each volume and are directly comparable. The light sheet thickness of the OpenSPIM is larger than
of Zeiss prototype, therefore more out-of-focus light is visible and (a,b) are more blurred. Therefore the effect of
deconvolution is especially visible, most dominantly in the third column showing the slice perpendicular to the
rotation axis. The dataset has a size of 793×384×370 px, acquired with in 6 views totalling around 680 million
pixels and 2.6 gigabytes of data. Computation time for 12 iterations was 12 minutes on two Nvidia Quadro 4000
GPU’s using optimization I.

13

Nature Methods: doi:10.1038/nmeth.2929



SUPPLEMENTARY FIGURE 13: Quality of reconstruction of Drosophila ovaries

Supplementary Figure 13: Comparison of reconstruction quality of Drosophila ovaries acquired on the Zeiss
SPIM prototype using maximum intensity projections. (a) shows the content-based fusion along the orientation
of one of the acquired views. (b) shows the same image deconvolved. (c) shows the projection along the
rotation axis of the content-based fusion, (d) of the deconvolved dataset. The final dataset has a size of
822×1211×430 px, acquired in 12 views totalling an input size of around 5 billion pixels and 19 gigabytes of
data (32 bit floating point data required for deconvolution). Computation time for 12 iterations was 36 minutes
on two Nvidia Quadro 4000 GPU’s using optimization I.
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SUPPLEMENTARY FIGURE 14: Comparison of Multi-View Deconvolution to Structured Illumi-
nation Light Sheet Data

Supplementary Figure 14: Comparison of Multi-View Deconvolution to Structured Illumination Light Sheet
Data. (a) Slice through a Drosophila embryo expressing a nuclear marker acquired with DSLM and structured
illumination (SI). (b) Corresponding slice acquired with standard light sheet microscopy. (a) and (b) taken from
Keller et al.8 (c-j) Slice through a Drosophila embryo in a similar stage of embryonic development expressing
His-YFP. (c) shows the result of the multi-view deconvolution, (d) the result of the content-based fusion and (e-j)
shows a slice through the aligned7 raw data as acquired by the Zeiss demonstrator B.
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SUPPLEMENTARY FIGURE 15: Comparison of Multi-View Deconvolution to 2p Microscopy

Supplementary Figure 15: Comparing multi-view deconvolution to two-photon (2p) microscopy. (a-c) slices
through a fixed Drosophila embryo stained with Sytox green labeling nuclei. Same specimen was acquired
with the Zeiss SPIM prototype (20x/0.5NA water dipping obj.) and directly afterwards with a 2p microscope
(20x/0.8NA air obj.). We compare the quality of content-based fusion, multi-view deconvolution, raw 2p stack
and single view deconvolution of the 2p acquisition. (a) lateral (xy), (b) axial (xz), (c) axial (yz) orientation of the
2p stack, SPIM data is aligned relative to it using the beads in the agarose. Arrows mark corresponding nuclei.

16

Nature Methods: doi:10.1038/nmeth.2929



SUPPLEMENTARY FIGURE 16: Multi-View Deconvolution of Spinning-Disc Confocal Data

Supplementary Figure 16: Multi-View Deconvolution of a Spinning-Disc Confocal Dataset. (a-d) show slices
through a fixed C. elegans in L1 stage stained with Sytox green labeling nuclei. The specimen was acquired
on a spinning disc confocal microscope (20x/0.5NA water dipping objective). The sample was embedded in
agarose and rotated using a self-build device.7 (a) Slice through the aligned input views; insets show averaged
MIP of the PSF. (b-d) slices with different orientations through the larva comparing the quality of the first view
of the input data, the single-view deconvolution of view 1 and the multi-view deconvolution of the entire dataset.
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SUPPLEMENTARY FIGURE 17: Variation of PSF across the light sheet in SPIM acquistions

50µm

Light sheet illumination

Supplementary Figure 17: Variation of the PSF across the light sheet in SPIM acquistions. The maximum
intensity projection perpendicular to the light sheet of a Drosophila embryo expressing His-YFP in all nuclei.
The fluorescent beads have a diameter of 500nm. The arrow shows the illumination direction of the light sheet.
The fluorescent beads should reflect the concave shape of a light sheet. The red box illustrates the area that is
approximately used for deconvolution.
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SUPPLEMENTARY TABLES

SUPPLEMENTARY TABLE 1: Summary of datasets used in this publication

Dataset Size, Lightsheet Computation Time, Machine
Thickness, SNR∗ Iterations, Method

Drosophila embryo expressing His-YFP
in all cells acquired with Zeiss SPIM
prototype using a 20x/0.5 detection ob-
jective (Fig. 2c-e, Supp. Fig. 11)†

720×380×350 px,
7 views,
LS∼5µm, SNR∼30

7 minutes,
12 iterations,
optimization I, λ = 0.006

2× Nvidia Quadro 4000‡,
64 GB RAM

Drosophila embryo expressing His-YFP
in all cells acquired with the Open-
SPIM using a 20x/0.5 detection objec-
tive (Supp. Fig. 12)

793×384×370 px,
6 views,
LS∼10µm, SNR∼15

12 minutes§,
12 iterations,
optimization I, λ = 0.006

2× Nvidia Quadro 4000‡,
64 GB RAM

Drosophila ovaries acquired on the
Zeiss SPIM prototype using a 20x/0.5
detection objective (Supp. Fig. 13)

1211×822×430 px,
12 views,
LS∼5µm, SNR∼19

36 minutes,
12 iterations,
optimization I, λ = 0.006

2× Nvidia Quadro 4000‡,
64 GB RAM

Drosophila embryo expressing His-YFP
in all cells acquired with Zeiss SPIM
prototype using a 20x/0.5 detection ob-
jective (Supp. Video 8-10,Supp. Fig.
14)

792×320×310 px,
6 views,
236 timepoints,
LS∼5µm, SNR∼26

24.3 hours,
12 iterations,
optimization I, λ = 0.006

2× Nvidia Quadro 4000‡,
64 GB RAM

Drosophila embryo expressing Histone-
H2Av-mRFPruby fusion in all cells im-
aged on Zeiss Lightsheet Z1 with a
20x/1.0 detection objective and dual-
sided illumination

928×390×390 px,
6 views,
715 timepoints,
LS∼5µm, SNR∼21

35 hours,
10 iterations,
optimization I, λ = 0.0006

4× Nvidia TESLA¶,
64 GB RAM

C. elegans embryo in 4-cell stage ex-
pressing PH-domain-GFP fusion ac-
quired with Zeiss SPIM prototype us-
ing a 40x/0.8 detection objective (Fig.
2a,b)†

180×135×180 px,
6 views,
LS∼3.5µm, SNR∼40

1 minute,
20 iterations,
optimization I, λ = 0.006

2× Intel Xeon E5-2630,
64 GB RAM

Fixed C. elegans larvae in L1 stage ex-
pressing LMN-1::GFP and stained with
Hoechst imaged on Zeiss Lightsheet Z1
with a 20x/1.0 detection objective (Fig.
2f,g and Supp. Video 4-7)

1640×1070×345 px,
4 views, 2 channels,
LS∼2µm,
SNR∼62 (Hoechst),
SNR∼24 (GFP)

2×160 minutes,
100 iterations,
optimization II, λ = 0

2× Intel Xeon E5-2690,
128 GB RAM

∗The SNR is estimated by M.S., E.M., and P.T. were additionally supported by the Bundesministerium fr Bildung und
Forschung grant 031A099.computing the average intensity of the signal, divided by the standard deviation of the signal in
areas with homogenous sample intensity
†This SPIM acquisition was already used in Preibisch (2010)7 to illustrate the results of the bead-based registration and

multi-view fusion; we use the underlying dataset again to illustrate the improved results of the multi-view deconvolution.
‡Two graphics cards in one PC, which can process two 512×512×512 blocks in parallel
§Note that the increased computation time is due to larger anisotropy of the acquired stacks leading to larger effective
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SUPPLEMENTARY TABLE 1 (CONTINUED): Summary of datasets used in this publication

Dataset Size, Lightsheet Computation Time, Machine
Thickness, SNR Iterations, Method

F ixed C. elegans in L1 stage stained
with Sytox green acquired with Spinning
Disc Confocal using a 20x/0.5 detection
objective (Supp. Fig. 16)‖

1135×400×430 px,
5 views,
LS N/A, SNR∼28

36 minutes,
50 iterations,
optimization II, λ = 0.0006

2× Intel Xeon E5-2680,
128 GB RAM

F ixed C. elegans in L1 stage stained
with Sytox green acquired with Spinning
Disc Confocal using a 20x/0.5 detection
objective (Supp. Fig. 16)∗∗

1151×426×190 px,
1 view,
LS N/A, SNR∼28

202 minutes,
900 iterations,
Lucy-Richardson,
λ = 0.0006

2× Intel Xeon E5620,
64 GB RAM

F ixed Drosophila embryo stained with
Sytox green acquired on the Zeiss
SPIM prototype using a 20x/0.5 detec-
tion objective (Supp. Fig. 15)

642×316×391 px,
9 views,
LS∼5µm, SNR∼20

15 minutes,
15 iterations,
optimization I, λ = 0.006

2× Intel Xeon E5-2680,
128 GB RAM

F ixed Drosophila embryo stained with
Sytox green acquired on a Two-Photon
Microscope using a 20x/0.8 detection
objective (Supp. Fig. 15)

856×418×561 px,
1 view,
LS N/A, SNR∼7

160 minutes,
300 iterations,
Lucy-Richardson,
λ = 0.006

2× Intel Xeon E5620,
64 GB RAM

Supplementary Table 1: Summary of all datasets used in this publication. Note that the multi-view deconvolution
of the C. elegans larvae in L1 stage (SPIM & Spinning Disc Confocal) required an additional registration step,
which is explained in the Online Methods.

PSF sizes, which increases computational effort. The image could therefore not be split up into two 512×512×512 blocks.
¶Run on a cluster with 4 nodes that are equipped with one Nvidia TESLA and 64 GB of system memory
‖This multi-view spinning disc acquisition was already used in Preibisch (2010)7 to illustrate the applicability of the bead-

based registration and multi-view fusion to other technologies than SPIM; we use the underlying dataset again to illustrate
the improved results and applicability of the multi-view deconvolution.
∗∗This is the same dataset as in the row above, but showing the time it took to compute the single-view deconvolution.
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SUPPLEMENTARY NOTE 1: BAYESIAN-BASED SINGLE-VIEW AND MULTI-VIEW DECON-
VOLUTION

REMARKS

This document closely follows the notation introduced in the paper of L. B. Lucy9 whenever possible. Note that
for simplicity all derivations in this document only cover the one-dimensional case. Nevertheless, all equations
are valid for any n-dimensional case.

SUPPLEMENTARY NOTE 1.1: Derivation of the Bayesian-based single-view deconvolution

This section re-derives the classical Bayesian-based Richardson10-Lucy9 deconvolution for single images, other
derivations presented in this document build up on it. The goal is to estimate the frequency distribution of an
underlying signal ψ(ξ) from a finite number of measurements x1

′
, x2

′
, ..., xN

′
. The resulting observed distribution

φ(x) is defined as

φ(x) =

∫
ξ

ψ(ξ)P (x|ξ)dξ (1)

where P (x|ξ) is the probability of a measurement occuring at x = x′ when it is known that the event ξ = ξ′ oc-
cured. In more practical image analysis terms equation 1 describes the one-dimensional convolution operation
where φ(x) is the blurred image, P (x|ξ) is the kernel and ψ(ξ) is the undegraded (or deconvolved) image. All
distributions are treated as probability distributions and fulfill the following constraints:∫

ξ

ψ(ξ)dξ =

∫
x

φ(x)dx =

∫
x

P (x|ξ)dx = 1 and ψ(ξ) > 0, φ(x) ≥ 0, P (x|ξ) ≥ 0 (2)

The basis for the derivation of the Bayesian-based deconvolution is the tautology

P (ξ = ξ′ ∧ x = x′) = P (x = x′ ∧ ξ = ξ′) (3)

It states that it is equally probable that the event ξ′ results in a measurement at x′ and that the measurement at
x′ was caused by the event ξ′. Integrating equation 3 over the measured distribution yields the joint probability
distribution ∫

x

P (ξ ∧ x)dx =

∫
x

P (x ∧ ξ)dx (4)

which can be expressed using conditional probabilities∫
x

P (ξ)P (x|ξ)dx =

∫
x

P (x)P (ξ|x)dx (5)

and in correspondence to Lucy’s notation looks like (equation 1)∫
x

ψ(ξ)P (x|ξ)dx =

∫
x

φ(x)Q(ξ|x)dx (6)

where P (ξ) ≡ ψ(ξ), P (x) ≡ φ(x), P (ξ|x) ≡ Q(ξ|x). Q(ξ|x) denotes what Lucy calls the ’inverse’ conditional
probability to P (x|ξ). It defines the probability that an event at ξ′ occured, given a specific measurement at x′.
As ψ(ξ) does not depend on x, equation 6 can be rewritten as

ψ(ξ)

=1︷ ︸︸ ︷∫
x

P (x|ξ)dx =

∫
x

φ(x)Q(ξ|x)dx (7)

hence (due to equation 2)

ψ(ξ) =

∫
x

φ(x)Q(ξ|x)dx (8)
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which corresponds to the inverse of the convolution in equation 1. Although Q(ξ|x) cannot be used to directly
compute ψ(ξ), Bayes’ Theorem and subsequently equation 1 can be used to reformulate it as

Q(ξ|x) =
ψ(ξ)P (x|ξ)

φ(x)
=

ψ(ξ)P (x|ξ)∫
ξ
ψ(ξ)P (x|ξ)dξ (9)

Replacing Q(ξ|x) in equation 8 yields

ψ(ξ) =

∫
x

φ(x)
ψ(ξ)P (x|ξ)∫

ξ
ψ(ξ)P (x|ξ)dξ dx = ψ(ξ)

∫
x

φ(x)∫
ξ
ψ(ξ)P (x|ξ)dξP (x|ξ)dx (10)

which exactly re-states the deconvolution scheme introduced by Lucy and Richardson. The fact that both sides
of the equation contain the desired underlying (deconvolved) distribution ψ(ξ) suggests an iterative scheme to
converge towards the correct solution

ψr+1(ξ) = ψr(ξ)

∫
x

φ(x)∫
ξ
ψr(ξ)P (x|ξ)dξP (x|ξ)dx (11)

where ψ0(ξ) is simply a constant distribution with each value being the average intensity of the measured
distribution φ(x).

Equation 11 turns out to be a maximum-likelihood (ML) expection-maximization (EM) formulation,11 which
works as follows. First, it computes for every pixel the convolution of the current guess of the deconvolved image
ψr(ξ) with the kernel (PSF) P (x|ξ), i.e. φr(x) =

∫
ξ
ψr(ξ)P (x|ξ)dξ. In EM-terms φr(x) describes the expected

value. The quotient between the input image φ(x) and the expected value φr(x) yields the disparity for every
pixel. These values are initially large but will become very small upon convergence. In an ideal scenario all
values of φr(x) and φ(x) will be identical once the algorithm converged. This ratio is subsequently convolved
with the point spread function P (x|ξ) reflecting which pixels influence each other. In EM-terms this is called the
maximization step. This also preserves smoothness. These resulting values are then pixel-wise multiplied with
the current guess of the deconvolved image ψr(ξ), which we call an RL-update (Richardson-Lucy). It results in
a new guess for the deconvolved image.

Starting from an initial guess of an image with constant values, this scheme will converge towards the correct
solution if the guess of the point spread function is correct and if the observed distribution is not degraded by
noise, transformations, etc.

SUPPLEMENTARY NOTE 1.1.1: Integrating ξ and x

Note that convolution of ψr(ξ) with P (x|ξ) requires integration over ξ, while the convolution of the quotient image
with P (x|ξ) integrates over x. Integration over x can be formulated as convolution if P (x|ξ) is constant by using
inverted coordinates P (−x|ξ). Note that it can be ignored if the kernel is symmetric P (x|ξ) = P (−x|ξ). For
single-view datasets this is often the case, whereas multi-view datasets typically have non-symmetric kernels
due to their transformations resulting from image alignment.
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SUPPLEMENTARY NOTE 1.2: Derivation of the Bayesian-based multi-view deconvolution

This section shows for the first time the entire derivation of Bayesian-based multi-view deconvolution using
probabilty theory. Compared to the single-view case we have a set of views V = {v1...vN : N = |V |} comprising
N observed distributions φv(xv) (input views acquired from different angles), N point spread functions Pv(xv|ξ)
corresponding to each view, and one underlying signal distribution ψ(ξ) (deconvolved image). The observed
distributions φv(xv) are accordingly defined as

φ1(x1) =

∫
ξ

ψ(ξ)P (x1|ξ)dξ (12)

φ2(x2) =

∫
ξ

ψ(ξ)P (x2|ξ)dξ (13)

... (14)

φN (xN ) =

∫
ξ

ψ(ξ)P (xN |ξ)dξ (15)

The basis for the derivation of the Bayesian-based multi-view deconvolution is again a tautology based on the
individual observations

P (ξ = ξ′ ∧ x1 = x′1 ∧ ... ∧ xN = x′N ) = P (x1 = x′1 ∧ ... ∧ xN = x′N ∧ ξ = ξ′) (16)

Integrating equation 16 over the measured distributions yields the joint probability distribution∫
x1

...

∫
xN

P (ξ ∧ x1 ∧ ... ∧ xN )dx1...dxn =

∫
x1

...

∫
xN

P (x1 ∧ ... ∧ xN ∧ ξ)dx1...dxN (17)

shortly written as ∫
x

P (ξ, x1, ..., xN )dx =

∫
x

P (x1, ..., xN , ξ)dx (18)

By expressing the term using conditional probabilities one obtains∫
x

P (ξ)P (x1|ξ)P (x2|ξ, x1) ... P (xN |ξ, x1, ..., xN−1)dx =

∫
x

P (x1)P (x2|x1)P (x3|x1, x2) ... P (ξ|x1, ..., xN )dx

(19)
On the left side of the equation all terms are conditionally independent of any xv given ξ. This results from the
fact that if an event ξ = ξ′ occured, each individual measurement xv depends only on ξ′ and the respective
point spread function P (xv|ξ) (supplementary figure 1a for illustration). Equation 19 therefore reduces to

P (ξ)

=1︷ ︸︸ ︷∫
x

P (x1|ξ)P (x2|ξ) ... P (xN |ξ)dx =

∫
x

P (x1)P (x2|x1)P (x3|x1, x2) ... P (xN |x1, ..., xN−1)P (ξ|x1, ..., xN )dx

(20)
Assuming independence of the observed distributions P (xv) equation 20 further simplifies to

P (ξ) =

∫
x

P (x1)P (x2)P (x3) ... P (xN )P (ξ|x1, ..., xN )dx (21)

Although independence between the views is assumed,2,3,12 the underlying distribution P (ξ) still depends on
the observed distributions P (xv) through P (ξ|x1, ..., xN ).

Note: In section 3 we will show that that the derivation of Bayesian-based multi-view deconvolution can be
be achieved without assuming independence of the observed distributions P (xv). Based on that derivation we
argue that there is a relationship between the P (xv)’s (supplementary figure 1b for illustration) and that it can
be incorporated into the derivation to achieve faster convergence as shown in sections 4 and 6.
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We cannot approximate P (ξ|x1, ..., xN ) directly and therefore need to reformulate it in order to express it
using individual P (ξ|xv), which can subsequently be used to formulate the deconvolution task as shown in
section 1.1. Note that according to Lucy’s notation P (ξ|x1, ..., xN ) ≡ Q(ξ|x1, ..., xN ) and P (ξ|xv) ≡ Q(ξ|xv).

P (ξ|x1, ..., xN ) =
P (ξ, x1, ..., xN )

P (x1, ..., xN )
(22)

P (ξ|x1, ..., xN ) =
P (ξ)P (x1|ξ)P (x2|ξ, x1)...P (xN |ξ, x1, ..., xN−1)

P (x1)P (x2|x1)...P (xN |x1, ..., xN−1)
(23)

Due to the conditional independence of the P (xv) given ξ (equation 19→ 20 and supplementary figure 1a) and
the assumption of independence between the P (xv) (equation 20→ 21) equation 23 simplifies to

P (ξ|x1, ..., xN ) =
P (ξ)P (x1|ξ)...P (xN |ξ)

P (x1)...P (xN )
(24)

Using Bayes’ Theorem to replace all

P (xv|ξ) =
P (xv)P (ξ|xv)

P (ξ)
(25)

yields

P (ξ|x1, ..., xN ) =
P (ξ) P (ξ|x1)P (x1)...P (ξ|xN )P (xN )

P (x1)...P (xN ) P (ξ)
N

(26)

P (ξ|x1, ..., xN ) =
P (ξ) P (ξ|x1)...P (ξ|xN )

P (ξ)
N

(27)

P (ξ|x1, ..., xN ) =
P (ξ|x1)...P (ξ|xN )

P (ξ)
N−1 (28)

Substituting equation 28 in equation 21 yields

P (ξ) =

∫
x

P (x1) ... P (xN )P (ξ|x1)...P (ξ|xN )dx

P (ξ)
N−1 (29)

and rewritten in Lucy’s notation

ψ(ξ) =

∫
x

φ1(x1) ... φN (xN )Q(ξ|x1)...Q(ξ|xN )dx

ψ(ξ)
N−1 (30)

ψ(ξ) =

∫
x1

φ1(x1)Q(ξ|x1)dx1 ...

∫
xN

φN (xN )Q(ξ|xN )dxN

ψ(ξ)
N−1 (31)

ψ(ξ) =

∏
v∈V

∫
xv

φv(xv)Q(ξ|xv)dxv

ψ(ξ)
N−1 (32)
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As in the single view case we replace Q(ξ|xv) with equation 9

ψ(ξ) =

∏
v∈V

∫
xv

φv(xv)
ψ(ξ)P (xv|ξ)∫

ξ
ψ(ξ)P (xv|ξ)dξ

dxv

ψ(ξ)
N−1 (33)

ψ(ξ) =

ψ(ξ)�ZN
∏
v∈V

∫
xv

φv(xv)
P (xv|ξ)∫

ξ
ψ(ξ)P (xv|ξ)dξ

dxv

�
��HHHψ(ξ)N−1

(34)

ψ(ξ) = ψ(ξ)
∏
v∈V

∫
xv

φv(xv)
P (xv|ξ)∫

ξ
ψ(ξ)P (xv|ξ)dξ

dxv (35)

As in the single view case, both sides of the equation contain the desired deconvolved distribution ψ(ξ). This
again suggests the final iterative scheme

ψr+1(ξ) = ψr(ξ)
∏
v∈V

∫
xv

φv(xv)∫
ξ
ψr(ξ)P (xv|ξ)dξ

P (xv|ξ)dxv (36)

where ψ0(ξ) is considered a distribution with a constant value. Note that the final derived equation 36 ends up
being the per pixel multiplication of the single view RL-updates from equation 11.

It is important to note that the maximum-likelihood expectation-maximization based derivation1 yields an
additive combination of the individual RL-updates, while our derivation based probability theory and Bayes’
Theorem ends up being a multiplicative combination. However, our derivation enables us to prove (section
3) that this formulation can be achieved without assuming independence of the observed distributions (input
views), which allows us to introduce optimizations to the derviation (sections 4 and 6). We additionally proof of
in section 2 the convergence of our multiplicative derivation to the maximum-likelihood solution.

SUPPLEMENTARY NOTE 1.3: Expression in convolution algebra

In order to be able to efficiently compute equation 36 the integrals need to be expressed as convolutions, which
can be computed in Fourier Space using the Convolution Theorem. Expressing equation 36 in convolution
algebra (see also equation 1) requires two assumptions. Firstly, we assume the point spread functions P (xv|ξ)
to be constant for every location in space. Secondly, we assume that the different coordinate systems ξ and
x1 ... xN are identical, i.e. they are related by an identity transformation. We can assume that, as prior to the
deconvolution the datasets have been aligned using the bead-based registration algorithm.7 The reformulation
yields

ψr+1 = ψr
∏
v∈V

φv
ψr ∗ Pv

∗ P ∗v (37)

where ∗ refers to the convolution operator, · and
∏

to scalar multiplication, − to scalar division and

Pv ≡ P (xv|ξ) (38)

φv ≡ φv(xv) (39)

ψr ≡ ψr(ξ) (40)

Note that P ∗v refers to the mirrored version of kernel Pv (see section 1.1.1 for the explanation).
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SUPPLEMENTARY NOTE 2: PROOF OF CONVERGENCE FOR BAYESIAN-BASED MULTI-
VIEW DECONVOLUTION

This section proofs that our Bayesian-based derivation of multi-view deconvolution (equation 36) converges to
the maximum-likelihood (ML) solution using noise-free data. We chose to adapt the proof developed for Ordered
Subset Expectation Maximization (OS-EM)5 due to its similarity to our derivation (see section 5).

SUPPLEMENTARY NOTE 2.1: PROOF FOR NOISE-FREE DATA
Assuming the existence of a feasible solution ψ∗ it has been shown5 that the likelihood Lr := L(ψr;ψ∗) of the
solution ψ at iteration r can be computed as

L(ψr;ψ∗) = −
∫
ξ

ψ∗(ξ) log
ψ∗(ξ)

ψr(ξ)
dξ (41)

Following the argumentations of Shepp and Vardi,1 Kaufmann13 and Hudson and Larkin5 convergence of the
algorithm is proven if the likelihood of the solution ψ increases with every iteration since L is bounded by 0. In
other words

∆L = Lr+1 − Lr (42)

≥ 0 (43)

We will now prove that ∆L is indeed always greater or equal to zero. Replacing equation 41 in equation 42
yields

∆L =

∫
ξ

ψ∗(ξ) log
ψ∗(ξ)

ψr(ξ)
− ψ∗(ξ) log

ψ∗(ξ)

ψr+1(ξ)
dξ (44)

=

∫
ξ

ψ∗(ξ) log
ψr+1(ξ)

ψr(ξ)
dξ (45)

Next, we substitute ψr+1(ξ) with our derivation of Bayesian-based multi-view deconvolution (equation 36). Note
that for simplicity we replace

∫
ξ
ψr(ξ)P (xv|ξ)dξ with φrv(xv), which refers to the current estimate of the observed

distribution given the current guess of the underlying distribution ψr (or in EM terms the expected value).

∆L =

∫
ξ

ψ∗(ξ) log

ψr(ξ)

(∏
v∈V

∫
xv

φv(xv)

φrv(xv)
P (xv|ξ)dxv

) 1
|V |

ψr(ξ)
dξ (46)

=

∫
ξ

ψ∗(ξ) log

(∏
v∈V

∫
xv

φv(xv)

φrv(xv)
P (xv|ξ)dxv

) 1
|V |

dξ (47)

=
1

|V |
∑
v∈V

∫
ξ

ψ∗(ξ) log

∫
xv

φv(xv)

φrv(xv)
P (xv|ξ)dxvdξ (48)

As equation 36 expresses a proportion, it is necessary to normalize for the number of observed distributions |V |
and apply the |V |’th root, i.e. compute the geometric mean. Note that this normalization is the equivalent to the
division by |V | as applied in the ML-EM derivations1,3 that use the arithmetic mean of the individual RL-updates
in order to update underlying distribution.

Using Jensen’s inequality equation 48 can be reformulated (equation 49) and further simplified

∆L ≥ 1

|V |
∑
v∈V

∫
ξ

ψ∗(ξ)

∫
xv

log

(
φv(xv)

φrv(xv)

)
P (xv|ξ)dxvdξ (49)

=
1

|V |
∑
v∈V

∫
xv

log

(
φv(xv)

φrv(xv)

)∫
ξ

ψ∗(ξ)P (xv|ξ)dξdxv (50)
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Substituting equation 1 in equation 50 yields

∆L ≥ 1

|V |
∑
v∈V

∫
xv

log

(
φv(xv)

φrv(xv)

)
φv(xv)dxv (51)

It follows directly that in order to prove that ∆L ≥ 0, it is sufficient to prove that∫
xv

log

(
φv(xv)

φrv(xv)

)
φv(xv)dxv ≥ 0 (52)

Based on the inequality log x ≥ 1− x−1 for x > 0 proven by Adolf Hurwitz, we need to show that∫
xv

log

(
φv(xv)

φrv(xv)

)
φv(xv)dxv ≥

∫
xv

(
1− φrv(xv)

φv(xv)

)
φv(xv)dxv ≥ 0 (53)

=

∫
xv

φv(xv)dxv −
∫
xv

φrv(xv)dxv (54)

=

∫
xv

φv(xv)dxv −
∫
xv

∫
ξ

ψr(ξ)P (xv|ξ)dξdxv (55)

=

∫
xv

φv(xv)dxv −
∫
ξ

ψr(ξ)

=1︷ ︸︸ ︷∫
xv

P (xv|ξ)dxv dξ (56)

=

∫
xv

φv(xv)dxv −
∫
ξ

ψr(ξ)dξ (57)

≥ 0 ⇐⇒
∫
xv

φv(xv)dxv ≥
∫
ξ

ψr(ξ)dξ (58)

In other words, convergence is proven if we show that the energy of the underlying distribution ψ(ξ) (deconvolved
image) is never greater than energy of each observed distribution φv(xv) (input views). Replacing ψr(ξ) with
our Bayesian-based derivation (equation 36) shows that proving the condition in equation 58 is equivalent to
proving ∫

xv

φv(xv)dxv ≥
∫
ξ

ψr(ξ)

(∏
v∈V

∫
xv

φv(xv)

φrv(xv)
P (xv|ξ)dxv

) 1
|V |

dξ (59)

As this inequality has to hold for any iteration r, we omit writing r − 1 for simplicity. As the arithmetic average is
always greater or equal than the geometric average14 it follows that proving equation 59 is equivalent to∫

xv

φv(xv)dxv ≥
∫
ξ

ψr(ξ)
1

|V |
∑
v∈V

∫
xv

φv(xv)

φrv(xv)
P (xv|ξ)dxvdξ ≥

∫
ξ

ψr(ξ)

(∏
v∈V

∫
xv

φv(xv)

φrv(xv)
P (xv|ξ)dxv

) 1
|V |

dξ

(60)
and we therefore need to prove the inequality only for the arithmetic average. We simplify equation 60 as follows∫

xv

φv(xv)dxv ≥ 1

|V |
∑
v∈V

∫
ξ

ψr(ξ)

∫
xv

φv(xv)

φrv(xv)
P (xv|ξ)dxvdξ (61)

=
1

|V |
∑
v∈V

∫
xv

φv(xv)

φrv(xv)

∫
ξ

ψr(ξ)P (xv|ξ)dξdxv (62)

=
1

|V |
∑
v∈V

∫
xv

φv(xv)

φrv(xv)
φrv(xv)dxv (63)

=
1

|V |
∑
v∈V

∫
xv

φv(xv)dxv (64)

As the integral of all input views is identical (equation 2), equation 64 is always true, and we proved that our
Bayesian-based derivation of multi-view deconvolution always converges to the Maximum Likelihood.
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SUPPLEMENTARY NOTE 3: DERIVATION OF BAYESIAN-BASED MULTI-VIEW DECONVO-
LUTION WITHOUT ASSUMING VIEW INDEPENDENCE

Previous derivations of the Richardson-Lucy multi-view deconvolution1–3,12 assumed independence of the in-
dividual views in order to derive variants of equation 36. The following derivation shows that it is actually
not necessary to assume independence of the observed distributions φv(xv) (equation 20 → 21 and equation
23→ 24) in order to derive the formulation for Bayesian-based multi-view deconvolution shown in equation 36.

We therefore rewrite equation 21 without assuming independence (which is then identical to equation 20)
and obtain

P (ξ) =

∫
x

P (x1)P (x2|x1) ... P (xN |x1, ..., xN−1)P (ξ|x1, ..., xN )dx (65)

We consequently also do not assume independence in equation 24, which intends to replace P (ξ|x1, ..., xN ),
and obtain

P (ξ|x1, ..., xN ) =
P (ξ)P (x1|ξ) ... P (xN |ξ)

P (x1)P (x2|x1) ... P (xN |x1, ..., xN−1)
(66)

Replacing equation 66 in 65 yields

P (ξ) =

∫
x

P (x1)P (x2|x1) ... P (xN |x1, ..., xN−1)
P (ξ)P (x1|ξ) ... P (xN |ξ)

P (x1)P (x2|x1) ... P (xN |x1, ..., xN−1)
dx (67)

Cancelling out all terms below the fraction bar (from equation 66) with the terms in front of the fraction bar (from
equation 65) results in

P (ξ) =

∫
x

P (ξ)P (x1|ξ) ... P (xN |ξ)dx (68)

Using again Bayes’ Theorem to replace all

P (xv|ξ) =
P (xv)P (ξ|xv)

P (ξ)
(69)

yields

P (ξ) =

∫
x

P (ξ)P (x1)P (ξ|x1) ... P (xN )P (ξ|xN )dx

P (ξ)N
(70)

P (ξ) =

∫
x

P (x1) ... P (xN )P (ξ|x1) ... P (ξ|xN )dx

P (ξ)N−1
(71)

which is identical to equation 29. This proofs that we can derive the final equation 36 without assuming inde-
pendence of the observed distributions.
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SUPPLEMENTARY NOTE 4: EFFICIENT BAYESIAN-BASED MULTI-VIEW DECONVOLUTION
Section 3 shows that the derivation of Bayesian-based multi-view deconvolution does not require the assumption
that the observed distributions (views) are independent. We want to take advantage of that and incorporate the
relationship between them into the deconvolution process to reduce convergence time. In order to express
these dependencies we need to understand and model the conditional probabilities P (xw|xv) describing how
one view φw(xw) depends on another view φv(xv).

SUPPLEMENTARY NOTE 4.1: MODELING CONDITIONAL PROBABILITIES

Let us assume that we made an observation xv = x′v (see also supplementary figure 1b). The ’inverse’ point
spread function Q(ξ|xv) defines a probability for each location of the underlying distribution that it caused the
event ξ = ξ′ that lead to this observation. Based on this probability distribution, the point spread function of any
other observation P (xw|ξ) can be used to consecutively assign a probability to every of its locations defining
how probable it is to expect an observation xw = x′w corresponding to xv = x′v. Assuming the point spread
function P (xw|ξ) is known, this illustrates that we are able to estimate the conditional probability P (xw|xv = x′v)

for every location xw = x′w as well as we can estimate the ’inverse’ point spread function Q(ξ|xv).
However, we want to be able to compute an entire ’virtual’ distribution, which is based on not only one

singluar event xv = x′v, but an entire observed distribution φv(xv). Such a ’virtual’ distribution is solely based
on the conditional probabilities P (xw|xv) and summarizes our knowledge about a distribution φw(xw) by just
observing φv(xv) and knowing the (inverse) point spread functions Q(ξ|xv) and P (xw|ξ). We denote a ’virtual’
distribution φVw

v (xw); the subscript v denotes the observed distribution it is based on, w defines the distribution
that is estimated and V labels it as ’virtual’ distribution.

The derviation of the formulation for a ’virtual’ distribution is based on equations 1 and 8. The ’inverse’
point spread function Q(ξ|xw) relates φv(xv) to the underlying signal distribution ψ(ξ), and the point spread
function P (xw|ξ) consecutively relates it to the conditionally dependent signal distribution φw(xw) (see also
supplementary figure 1b)

ψ(ξ) =

∫
xv

φv(xv)Q(ξ|xv)dxv (72)

φw(xw) =

∫
ξ

ψ(ξ)P (xw|ξ)dξ (73)

Substituting equation 72 in equation 73 yields

φw(xw) =

∫
ξ

∫
xv

φv(xv)Q(ξ|xv)dxvP (xw|ξ)dξ (74)

As discussed in sections 1.1 and 1.2, we cannot use Q(ξ|xv) directly to compute ψ(ξ). Using Bayes’ theorem it
can be rewritten as

Q(ξ|xv) =
ψ(ξ)P (xv|ξ)
φv(xv)

(75)

Assuming φv(xv) and ψ(ξ) constant (or rather identical) simplifies equation 75 to

Q(ξ|xv) = P (xv|ξ) (76)

This assumption reflects that initially we do not have any prior knowledge of Q(ξ|xv) and therefore need to
set it equal to the PSF P (xv|ξ), which states the worst-case scenario. In other words, the PSF constitutes an
upper bound for all possible locations of the underlying distribution ψ(ξ) that could contribute to the observed
distribution given an observation at a specific location xv = x′v. Thus, this assumption renders the estimate
φVw
v (xw) less precise (equation 77 and main text figure 1c), while not omitting any of the possible solutions.

Note that it would be possible to improve the guess of Q(ξ|xv) after every iteration. However, it would require a
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convolution with a different PSF at every location, which is currently computationally not feasible and is therefore
omitted. Replacing equation 76 in equation 74 yields

φw(xw) ≈ φVw
v (xw) =

∫
ξ

∫
xv

φv(xv)P (xv|ξ)dxvP (xw|ξ)dξ (77)

Equation 77 enables the estimation of entire ’virtual’ distributions φVw
v (xw), see and main text figure 1c for a

visualization. These ’virtual’ distributions constitute an upper boundary describing how a distribution φw(xw) ≈
φVw
v (xw) could look like while only knowing φv(xv) and the two PSF’s P (xv|ξ) and P (xw|ξ). We denote it upper

boundary as it describes the combination of all possiblities of how a observed distribution φw(xw) can look like.

SUPPLEMENTARY NOTE 4.2: INCORPORATING VIRTUAL VIEWS INTO THE DECONVOLUTION
SCHEME

In order to incorporate this knowledge into the deconvolution process (equation 36), we perform updates not
only based on the observed distributions φv(xv) but also all possible virtual distributions φVw

v (xw) as modelled
by equation 77 and shown in and main text figure 1c. Based on all observed distributions

V = {φ1(x1), φ2(x2), ...φN (xN )} (78)

we can estimate the following ’virtual’ distributions

W = {φV2
1 (x2), φV3

1 (x3), ..., φVN
1 (xN ), φV1

2 (x1), φV3
2 (x3), ..., φVN

2 (xN ), ..., φ
VN−1

N (xN−1)} (79)

where
|W | = (N − 1)N : N = |V | (80)

Note that if only one input view exists, W = ∅. We define subsets Wv ⊆W , which depend on specific observed
distributions φv(xv) as follows

W1 = {φV2
1 (x2), φV3

1 (x3), ..., φVN
1 (xN )} (81)

W2 = {φV1
2 (x1), φV3

2 (x3), ..., φVN
2 (xN )} (82)

... (83)

WN = {φV1

N (x1), φV2

N (x2), ..., φ
VN−1

N (xN−1)} (84)

where
W =

⋃
v∈V

Wv (85)

Incorporating the virtual distributions into the multi-view deconvolution (equation 36) yields

ψr+1(ξ) = ψr(ξ)
∏
v∈V

∫
xv

φv(xv)∫
ξ
ψr(ξ)P (xv|ξ)dξ

P (xv|ξ)dxv
∏
w∈Wv

∫
xw

φVw
v (xw)∫

ξ
ψr(ξ)P (xw|ξ)dξ

P (xw|ξ)dxw (86)

This formulation is simply a combination of observed and ’virtual’ distributions, which does not yield any ad-
vantages in terms of computational complexity yet. During the following steps we will show that using a single
assumption we are able to combine the update steps of the observed and ’virtual’ distributions into one single
update step for each observed distribution.

For simplicity we focus on one oberved distribution φv(xv) and its corresponding subset of ’virtual’ distribu-
tions Wv. Note that the following assumptions and simplifications apply to all subsets individually.∫

xv

φv(xv)∫
ξ
ψr(ξ)P (xv|ξ)dξ

P (xv|ξ)dxv
∏
w∈Wv

∫
xw

φVw
v (xw)∫

ξ
ψr(ξ)P (xw|ξ)dξ

P (xw|ξ)dxw (87)
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First, the ’virtual’ distributions φVw
v (xw) are replaced with equation 77 which yields∫

xv

φv(xv)∫
ξ
ψr(ξ)P (xv|ξ)dξ

P (xv|ξ)dxv
∏
w∈Wv

∫
xw

∫
ξ

∫
xv
φv(xv)P (xv|ξ)dxvP (xw|ξ)dξ∫

ξ
ψr(ξ)P (xw|ξ)dξ

P (xw|ξ)dxw (88)

Note that
∫
ξ
ψr(ξ)P (xw|ξ)dξ corresponds to our current guess of the observed distribution φw(xw), which is

based on the current guess of the underlying distribution ψr(ξ) and the point spread function P (xw|ξ) (equa-
tion 1). In order to transform it into a ’virtually’ observed distribution compatible with φVw

v (xw), we also apply
equation 77, i.e. we compute it from the current guess of the observed distribution φv(xv) yielding∫

xv

φv(xv)∫
ξ
ψr(ξ)P (xv|ξ)dξ

P (xv|ξ)dxv
∏
w∈Wv

∫
xw

∫
ξ

∫
xv
φv(xv)P (xv|ξ)dxvP (xw|ξ)dξ∫

ξ

∫
xv

∫
ξ
ψr(ξ)P (xv|ξ)dξP (xv|ξ)dxvP (xw|ξ)dξ

P (xw|ξ)dxw (89)

To better illustrate the final simplifications we transform equation 89 into convolution algebra (section 1.3). The
reformulation yields

φv
ψr ∗ Pv

∗ P ∗v
∏
w∈Wv

φv ∗ P ∗v ∗ Pw
ψr ∗ Pv ∗ P ∗v ∗ Pw

∗ P ∗w (90)

Additional simplification of equation 90 requires an assumption in convolution algebra that we incorporate twice.
Given three functions f , g and h we assume

(f ∗ g) · (f ∗ h) ≈ f ∗ (g · h) (91)

We illustrate in supplementary figure 3 on a one-dimensional and two-dimensional example that for Gaussian-
like distributions this assumption may hold true after normalization of both sides of the equation. Note that the
measured PSF’s usually resemble a distribution similiar to a gaussian (supplementary figure 5 and 17).

The numerator and the denominator of the ratio of the ’virtual’ distribution in equation 90 both contain two
consecutive convolutions with P ∗v and Pw as indicated by brackets. Based on equation 91 we assume

(g ∗ f)

(h ∗ f)
≈
( g
h

)
∗ f (92)

where

f ≡ P ∗v ∗ Pw (93)

g ≡ φv (94)

h ≡ ψr ∗ Pv (95)

and

(g ∗ f)

(h ∗ f)
= (g ∗ f) · 1

(h ∗ f)
= (g ∗ f) ·

(
1

h
∗ f
)

=

equation 91︷ ︸︸ ︷
(f ∗ g) ·

(
f ∗ 1

h

)
≈ f ∗

(
g · 1

h

)
= f ∗

( g
h

)
=
( g
h

)
∗ f (96)

Based on this assumption we can rewrite equation 90 as

φv
ψr ∗ Pv

∗P ∗v
∏
w∈Wv

φv
ψr ∗ Pv

∗P ∗v ∗ Pw ∗ P ∗w (97)

Note that this reformulation yields two identical terms as outlined by brackets describing the ratio between the
observed distribution φv and its guess based on the current iteration of the deconvolved distribution ψr ∗ Pv. To
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further simplify equation 97 we apply the assumption (equation 91) again where

f ≡ φv
ψr ∗ Pv

(98)

g ≡ P ∗v (99)

h ≡ P ∗v ∗ Pw ∗ P ∗w (100)

which yields
φv

ψr ∗ Pv
∗
(
P ∗v

∏
w∈Wv

P ∗v ∗ Pw ∗ P ∗w

)
(101)

In the context of all observed distributions, the final formula for efficient Bayesian-based multi-view deconvolution
reads

ψr+1 = ψr
∏
v∈V

φv
ψr ∗ Pv

∗

P compound
v︷ ︸︸ ︷(

P ∗v
∏
w∈Wv

P ∗v ∗ Pw ∗ P ∗w

)
(102)

Equation 102 incorporates all observerd and ’virtual’ distributions that speed up convergence, but requires the
exactly same number of computations as the normal multi-view deconvolution (equation 36) derived in section
1.2. The only additional computational overhead is the initial computation of the compound kernels for each
observed distribution

P compoundv = P ∗v
∏
w∈Wv

P compound
wv︷ ︸︸ ︷

P ∗v ∗ Pw ∗ P ∗w (103)

The compound kernel for a specific observed distribution φv is computed by scalar multiplication of its mirrored
point spread function P ∗v with all ’virtual’ compound kernels P compoundwv

based on the corresponding ’virtual’
distributions φVw

v (xw) ∈ Wv. All individual ’virtual’ compound kernels are computed by convolving P ∗v with Pw
and sequentially with P ∗w. For most multi-view deconvolution scenarios the computational effort for the pre-
computation of the compound kernels can be neglected as the PSF’s a very small compared to the images and
they need to be computed only once.
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SUPPLEMENTARY NOTE 5: ALTERNATIVE ITERATION FOR FASTER CONVERGENCE
To further optimize convergence time we investigated the equations 36 and 102 in detail. Both multi-view
deconvolution formulas evaluate all views in order to compute one single update step of ψ(ξ). It was already
noted that in both cases each update step is simply the multiplication of all contributions from each observed
distribution. This directly suggests an alternative update scheme where the individual contributions from each
observed distribution are directly multiplied to update ψ(ξ) in order to save computation time. In this iteration
scheme, equation 102 reads as follows

ψr+1 = ψr
φ1

ψr ∗ P1
∗
(
P ∗1

∏
w∈W1

P ∗1 ∗ Pw ∗ P ∗w

)
(104)

ψr+2 = ψr+1 φ2
ψr+1 ∗ P2

∗
(
P ∗2

∏
w∈W2

P ∗2 ∗ Pw ∗ P ∗w

)
(105)

... (106)

ψr+N = ψr+N−1
φN

ψr+N−1 ∗ PN
∗
(
P ∗N

∏
w∈WN

P ∗N ∗ Pw ∗ P ∗w

)
(107)

(108)

Note that for equation 36 (equation 37) the iterative scheme looks identical when the multiplicative part of the
compound kernel is left out; it actually corresponds to the sequential application of the standard Richardson-
Lucy (RL) updates (equation 11), which corresponds to the principle of Ordered Subset Expectation Maximiza-
tion5 (OS-EM, see section 5.1).

SUPPLEMENTARY NOTE 5.1: RELATIONSHIP TO ORDERED SUBSET EXPECTION MAXIMIZA-
TION (OS-EM)

The principle of OS-EM is the sequential application of subsets of the observed data to the underlying distribu-
tion ψ(ξ) using standard Richardson-Lucy (RL) updates (equation 11). Note that in a multi-view deconvolution
scenario, each observed distribution φv(xv) is equivalent to the OS-EM definition of a balanced subset as all
elements of the underlying distribution are updated for each φv(xv).

ψr+1(ξ) = ψr(ξ)

∫
x1

φ1(x1)∫
ξ
ψr(ξ)P (x1|ξ)dξ

P (x1|ξ)dx1 (109)

ψr+2(ξ) = ψr+1(ξ)

∫
x2

φ2(x2)∫
ξ
ψr+1(ξ)P (x2|ξ)dξ

P (x2|ξ)dx2 (110)

... (111)

ψr+N (ξ) = ψr+N−1(ξ)

∫
xN

φN (xN )∫
ξ
ψr+N−1(ξ)P (xN |ξ)dξ

P (xN |ξ)dxN (112)

As pointed out in the main text, the obvious relationship to OS-EM is that the sequential application of RL-
updates is directly suggested by our multiplicative derivation (equation 36), compared to the additive EM deriva-
tion.1
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SUPPLEMENTARY NOTE 6: AD-HOC OPTIMIZATIONS OF THE EFFICIENT BAYESIAN-BASED
MULTI-VIEW DECONVOLUTION

The efficient Bayesian-based multi-view deconvolution derived in section 4 offers possibilites for optimizations
as the assumption underlying the estimation of the conditional probabilities (section 4.1) results in smoothed
guess of the ’virtual’ distributions (and main text figure 1c). Therefore, the core idea underlying all subsequently
presented alterations of equation 102 is to change how the ’virtual’ distributions are computed. Due to the
optimizations introduced in the last section, this translates to modification of the ’virtual’ compound kernels

P compoundwv
= P ∗v ∗ Pw ∗ P ∗w (113)

The goal is to decrease convergence time while preserving reasonable deconvolution results. This can be
achieved by sharpening the ’virtual’ distribution (and main text figure 1c) without omitting possible solutions or
rendering them too unlikely.

SUPPLEMENTARY NOTE 6.1: OPTIMIZATION I - REDUCED DEPENDENCE ON VIRTUALIZED
VIEW

The computation of the ’virtual’ compound kernels contains two convolutions with the point spread function of
the ’virtualized’ observation, one with Pw and one with P ∗w. We found that skipping the convolution with P ∗w
significantly reduces convergence time while producing almost identical results even in the presence of noise
(section 7 and 7.5).

ψr+1 = ψr
∏
v∈V

φv
ψr ∗ Pv

∗
(
P ∗v

∏
w∈Wv

P ∗v ∗ Pw
)

(114)

SUPPLEMENTARY NOTE 6.2: OPTIMIZATION II - NO DEPENDENCE ON VIRTUALIZED VIEW

We determined empirically that further assuming Pw to be constant still produces reasonable results while
further reducing convergence time. We are aware that this is quite an ad-hoc assumption, but in the presence
of low noise levels still yields adequate results (section 7 and 7.5).

ψr+1 = ψr
∏
v∈V

φv
ψr ∗ Pv

∗
∏

v,w∈Wv

P ∗v (115)

Interestingly, this formulation shows some similarity to an optimization of the classic single-view Richardson-
Lucy deconvolution, which incorporates an exponent into the entire ’correction factor’,15 not only the PSF for the
second convolution operation. Our derivation of the efficient Bayesian-based multi-view scenario intrinsically
provides the exponent for the second convolution that can be used to speed up computation and achieve
reasonable results.

SUPPLEMENTARY NOTE 6.3: NO DEPENDENCE ON OBSERVED VIEW

Only keeping the convolutions of the ’virtualized’ observation, i.e. Pw and P ∗w yields a non-functional formulation.
This is in agreement with the estimation of the conditional probabilities (section 4.1).
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SUPPLEMENTARY NOTE 7: BENCHMARKS & ANALYSES
We compare the performance of our new derivations against classical multi-view deconvolution (section 7.1)
and against other optimized multi-view deconvolution schemes (section 7.2) using ground truth images. Sub-
sequently, we investigate the general image quality (section 7.3), the dependence on the PSF’s (section 7.4),
analyze the effect of noise and regularization (section 7.5) and show the result of imperfect point spread func-
tions (section 7.6).

The iteration behaviour of the deconvolution depends on the image content and the shape of the PSF (sup-
plementary figure 4d). In order to make the simulations relatively realistic for microscopic multi-view acquisitions,
we chose as ground truth image one plane of a SPIM acquistion of a Drosophila embryo expressing His-YFP in
all cells (supplementary figure 5a,e) that we blur with a maximum intensity projection of a PSF in axial direction
(xz), extracted from an actual SPIM acquistion (supplementary figure 5e).

SUPPLEMENTARY NOTE 7.1: CONVERGENCE TIME, NUMBER OF ITERATIONS & UPDATES
COMPARED TO CLASSICAL MULTI-VIEW DECONVOLUTION

First, we compare the performance of the efficient Bayesian-based multi-view deconvolution (section 4, equa-
tion 102) and its optimizations I & II (sections 6.1 and 6.2, equations 114 and 115) against the Bayesian-
based derivation (sections 1.2 and 3, equations 36 and 37) and the original Maximum-Likelihood Expectation-
Maximization derviation1 for combined (sections 1.2 – 6) and sequential (section 5, OSEM5) updates of the
underlying distribution.

Supplementary figure 4a-c illustrate computation time, number of iterations and number of updates of the
underlying distribution that are required by the different derivations to converge to a point, where they achieve
exactly the same average difference between the deconvolved image and the ground truth. Detailed parts of
the ground truth, PSFs, input images and results used for supplementary figure 4 are exemplarily pictured for
4 views in supplementary figure 5e, illustrating that all algorithms actually converge to the same result. The
entire ground truth picture is shown in supplementary figure 5a, the deconvolution result as achieved in the
benchmarks is shown in supplementary figure 5b.

Supplementary figure 4a shows that our efficient Bayesian-based deconvolution (equation 102) outperforms
the Bayesian-based deconvolution (equation 36) by a factor of around 1.5–2.5, depending on the number of
views involved. Optimization I is faster by a factor of 2–4, optimization II by a factor of 3–8. Sequential up-
dates (OSEM) pictured in red additionally speed up the computation by a factor of approximately n, where n
describes the number of views involved. This additional multiplicative speed-up is independent of the derivation
used. Supplementary figure 4b illustrates that our Bayesian-based deconvolution behaves very similar to the
Maximum-Likelihood Expectation-Maximization method.1 Note the logarithmic scale of all y-axes in supplemen-
tary figure 4.

It is striking that for combined updates (black) the computation time first decreases, but quickly starts to
increase with the number of views involved. In contrast, for sequential updates (OSEM) the computation time
descreases and then plateaus. The increase in computation time becomes clear when investigating the required
number of iterations†† (supplementary figure 4b). The number of iteration for combined updates (black) almost
plateaus at a certain level, however, with increasing number of views, the computational effort to compute one
update increases linearly. This leads to an almost linear increase in convergence time with an increasing number
of views when using combined updates. When using sequential updates (red), the underlying distribution is
updated for each view individually, hence the number of required iterations continuously decreases and only
the convergence time plateaus with an increasing number of views. Supplementary figure 4c supports this
interpretation by illustrating that for each derivation the number of updates of the underlying distribution defines
when the same quality of deconvolution is achieved.
††Note that we consider one iteration completed when all views contributed to update the underlying distribution once.

In the case of combined updates this refers to one update of the underlying distribution, in case of sequential updates this
refers to n updates.
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In any case, having more than one view available for the deconvolution process decreases computation time
and number of required updates significantly. This effect is especially prominent at a low number of views. For
example adding a second view decreases the computation time in average 45–fold, a third view still on average
another 1.5–fold.

One can argue that using combined update steps allows better parallelization of the code as all view contri-
butions can be computed at the same time, whereas sequential updating requires to compute one view after the
other. In practice, computing the update step for an individual view is already almost perfectly multi-threadable.
It requires two convolutions computed in Fourier space and several per-pixel operations. Even when several
GPU’s are available it can be parallelized as it can be split into blocks. Using sequential updates additionally
offers the advantage that the memory required for the computation is significantly reduced.

SUPPLEMENTARY NOTE 7.2: CONVERGENCE TIME, NUMBER OF ITERATIONS & UPDATES
COMPARED TO OPTIMIZED MULTI-VIEW DECONVOLUTION

Previously, other efficient methods for optimized multi-view deconvolution have been proposed. We compare
our methods against Scaled-Gradient-Projection (SGP),4 Ordered Subset Expectation Maximization (OSEM)5

and Maximum a posteriori with Gaussian Noise (MAPG).6 Again, we let the algorithms converge until they
achieve the same average difference of 0.07 to the known ground truth image.

In order to compare the different algorithms we re-implemented MAPG in Java, based on the Python source
code kindly provided by Dr. Peter Verveer. In order to compare to SGP, we downloaded the IDL source code.
In order to allow a reasonable convergence, it was necessary to add a constant background to the images
before processing them with SGP. It was also necessary to change the size of the input data to a square, even
dimension (614×614) to not introduce a shift of one pixel in the deconvolved data by the IDL code. OSEM
is identical to our sequential updates and therefore requires no additional implementation. Main text figure 1f
illustrates that our Java implementation (Bayesian-based + OSEM) and the IDL OSEM implementation require
almost the identical amount of iterations.

Regarding the number of iterations (main text figure 1f), the efficient Bayesian-based deconvolution and
Optimization I perform better compared to all other efficient methods for more than 4 overlapping views, Opti-
mization II already for more than 2 views. For example at 7 views, where OSEM (50), SGP (53) and MAPG (44)
need around 50 iterations, the efficient Bayesian-based deconvolution requires 23 iteration, Optimization I 17
iterations, and Optimization II 7 iteration in order to converge to the same result.

Concerning computation time (main text figure 1e), any algorithm we implemented in Java completely out-
performs any IDL implementation. For the almost identical implementation of OSEM Java is in average 8×
faster than IDL on the same machine (2× Intel Xeon E5-2680, 128 GB RAM), which slightly increases with the
number of views (7.89× for 2 views, 8.7× for 11 views). Practically, Optimization II outperforms all methods,
except MAPG at 2 views. At 7 views where SGP (IDL) and OSEM (IDL) require around 80 seconds to converge,
MAPG converges in 4 seconds, the efficient Bayesian-based deconvolution in 5 seconds, Optimization I in 3.7
seconds and Optimization II in 1.6 seconds.

Note that MAPG is conceptually different to all other deconvolution methods compared here. It assumes
Gaussian noise and performs the deconvolution on a fused dataset, which results in a reduced reconstruction
quality on real datasets (see also section 7.3.1). It also means that its computation time is theoretically in-
dependent on the number of views, a property that is shared with the classical OSEM (Supplementary figure
4c). However, it is obvious that up to 4 views, the deconvolution performance significantly increases with an
increasing number of views. We speculate that the reason for this is the coverage of frequencies in the Fourier
spectrum (thanks for a great discussion with H. Shroff, NIH). Each PSF view blurs the image in a certain direc-
tion, which means that certain frequencies are more preserved than others. For more than 4 views, it seems
that most high frequencies are contributed by at least one of the views and therefore the performance does not
increase any more for algorithms that do not take into account the relationships between the individual views.
Note, that our optimized multi-view deconvolution methods still signifcantly increase their performance if more
than 4 views contribute (main text figure 1d,e and supplementary figure 4a,b,c).
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Supplementary figure 9a plots the computation time versus the image size of the deconvolved image for a
dataset consisting of 5 views. All methods behave more or less proportional, however, the IDL code is only able
to process relatively small images.

Supplementary figure 9b illustrates that our optimizations can theoretically also be combined with SGP, not
only OSEM. The number of iterations is in average reduced 1.4-fold for the efficient Bayesian-based deconvo-
lution, 2.5-fold for Optimization I, and 2.5-fold for Optimization II.

SUPPLEMENTARY NOTE 7.3: VISUAL IMAGE QUALITY

Supplementary figure 5c shows the result using optimization II and sequential updates (OSEM) after 14 iter-
ations, the same quality as achieved by all algorithms as shown in supplementary figure 5e and used for the
benchmarks in supplementary figure 4. In this case the quality of the deconvolved image is sufficient to sep-
arate small details like the fluorescent beads, which is not possible in the input images (supplementary figure
5e, right top). 301 iterations almost perfectly restore the image (supplementary figure 5b,d). In comparison, the
Bayesian-based derivation (equation 36) needs 301 iteration to simply arrive at the quality pictured in supple-
mentary figure 5c,e.

SUPPLEMENTARY NOTE 7.3.1: COMPARISON TO MAPG

Supplementary figure 9c-h compares our fastest Optimization II to MAPG using the same 7-view acquisition of
a Drosophila embryo expressing His-YFP as in main text figure 3c-e. It shows that, despite being signifcantly
faster then MAPG (main text figure 1e,f), Optimization II clearly outperforms MAPG in terms of overall image
quality (supplementary figure 9c-h). Using the same blending scheme (supplementary figure 10) MAPG pro-
duces artifacts close to some of the nuclei (e.g. top left of supplementary figure 9e) and enhances stripes inside
the sample that arise from the beginning/ending of partially overlapping input views. Especially the lower part of
supplementary figure 9c shows reduced quality, which most likely arises from the fact that in that area one input
views less contributes to the final deconvolved image (note that the 7 views are equally spaced in 45 degree
steps from 0–270 degrees, however every pixel is covered by at least 2 views). Note that also Optimization II
shows slightly reduced image quality in this area, but is able to compensate the reduced information content
significantly better.

SUPPLEMENTARY NOTE 7.4: GENERAL DEPENDENCE ON THE PSF’s

For supplementary figure 4a-c the PSF’s are arranged in a way so that the angular difference between them
is maximal in the range from 0–180 degrees (supplementary figure 5e). Supplementary figure 4d visualizes
for 4 views that the angular difference between the views significantly influences the convergence behaviour.
Looking at two extreme cases explains this behaviour. In this synthetic environment a difference of 0 degrees
between PSF’s corresponds to 4 identical PSF’s and therefore 4 identical input images. This constellation is
identical to having just one view, which results in a very long convergence time (supplementary figure 4a). The
same almost applies for 180 degrees as the PSF that was used is quite symmetrical. In those extreme cases
our argument that we can learn something about a second view by looking at the first view (section 4.1) does
not hold. Therefore our efficient Bayesian-based deconvolution as well as the optimizations do not converge to
the identical result and few datapoints close and equal to 0 and 180 degrees are omitted. Note that they still
achieve a reasonable result, but simply cannot be plotted as this quality of reconstruction is not achieved.

In general, convergence time decreases as the level of overlap between the PSFs decreases. In case
of non-isotropic, gaussian-like PSFs rotated around the center (as in multi-view microscopy), this translates
to a decrease in convergence time with an increase in angular difference. From this we can derive that for
overlapping multi-view acquisitions it should be advantageous to prefer an odd over an even number of equally
spaced views.

Supplementary figure 4d also illustrates that convergence time significantly depends on the shape and size
of the PSF. Different PSF’s require different amount of iterations until they reach the same quality. Intuitively
this has to be true, as for example the most simple PSF consisting only of its central pixel does not require any
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deconvolution at all. Conversely, this also holds true for the images themselves; the iteration time required to
reach a certain quality depends on the content. For example, the synthetic image used in Supplementary Movie
1 takes orders of magnitude longer to converge to same cross correlation of 0.99 to ground truth, compared to
the image in supplementary figure 5a using the same PSF’s, algorithm and iteration scheme.

SUPPLEMENTARY NOTE 7.5: NOISE AND REGULARIZATION
Although the signal-to-noise ratio is typically very high in light-sheet microscopy (see Supplementary Table 1),
it is a common problem and we therefore investigated the effect of noise on the performance of the different
algorithms. As Poisson noise is the dominant source of noise in light microscopy we created our simulated input
views using a Poisson process with variable SNR:

SNR =
√
N (116)

where N is the number of photons collected. These images were then used to run the deconvolution process.
The first row in supplementary figure 6a and first column in supplementary figure 7 show the resulting input
data for varying noise levels. For supplementary figure 7c we added Gaussian noise with an increasing mean
to simulate the effects of Gaussian noise.

A comparison as in the previous section is unfortunately not possible as in the presence of noise none of
the algorithms converges exactly towards the ground truth. Note that still very reasonable results are achieved
as shown in supplementary figure 6a and 7. Therefore, we devised a different scenario to test the robustness to
noise. For the case of no noise (SNR =∞) we first identified the number of iterations required for each algorithm
to reach the same quality (supplementary figure 6c, 1st column). With increasing noise level we iterate the exact
same number of iterations for each algorithm and analyze the output.

Supplementary figure 6a,b,c show that for the typical regime of SNR’s in light sheet microscopy (see Sup-
plementary Table 1, estimation range from 15 to 63) all methods converge to visually identical results.

For low SNR’s (independent of Poisson or Gaussian noise) the Bayesian-based deconvolution (equation
36), the Maximum-Likelihood Expectation-Maximization (ML-EM) and the sequential updates (OSEM) score
best with almost identical results. For Poisson noise, MAPG and Optimization II show comparable results with
lower quality, Optimization I and the efficient Bayesian-based derivation lie in between. For Gaussian noise,
MAPG, the Bayesian-based derivation and Optimization I produce very similar results while Optimization II
shows lower quality.

To compensate for noise in the deconvolution we added the option of Tikhonov-regularization. Supplemen-
tary figure 6c illustrates the influence of the λ parameter on the deconvolution results. Supplementary figure 7
shows corresponding images for all data points. We think that although the Tikhonov regularization slows down
convergence (supplementary figure 6c), a low λ might be a good choice even in environments of a high SNR
(supplementary figure 7).

SUPPLEMENTARY NOTE 7.6: PSF-ESTIMATION
Another common source of errors is an imprecise estimation of the PSF’s. In the previous sections we always
assumed to know the PSF exactly. In real life PSF’s are either measured or theoretically computed and might
therefore not precisely resemble the correct system PSF of the microscope due to misalignement, refractions,
etc.

In order to be able to estimate the effect of using imprecise PSF’s for the deconvolution we randomly rotated
the PSF’s we used to create the input images before applying them to the deconvolution (supplementary figure
8). We used the same scheme to analyze the results as discussed in section 7.5. Surprisingly, the effect on the
deconvolution result is hardly noticable for all algorithms, even at an average rotation angle of 10 degrees. The
deconvolved images are practically identical (therefore not shown), the maximal difference in the correlation
coefficient is r=0.017. We suspect that this is a result of the almost Gaussian shape of the PSF’s. Although the
correct solution becomes less probable, it is still well within range.
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We investigated the change of the PSF of a SPIM system that should occur due to concavity of the light
sheet across the field of view. Typical light-sheet microscopic acquisitions as shown in supplementary figure
17 and 13 show no visible sign of change, even across the entire field of view. Given the tolerance of the
deconvolution regarding the shape of the PSF we concluded that it is not necessary to extract different PSFs
at different physical locations. Note that the option to perform the deconvolution in blocks (Online Methods)
would easily allow such an extension. We think that another real improvement in deconvolution quality could be
achieved by being able to measure the correct PSF inside the sample, which could be combined with the work
from Blume et al.16 Additionally to the experimental burden, it is unfortunately far from being computationally
tractable.

SUPPLEMENTARY NOTE 8: LINKS TO THE CURRENT SOURCE CODES
The source code for the efficient Bayesian-based multi-view deconvolution is implemented in ImgLib217 and
available on Github: https://github.com/fiji/spimreconstruction. The source code most relevant to the
deconvolution can be found in the package src.main.java.mpicbg.spim.postprocessing.deconvolution2.
The code for the CUDA implementation is available online (http://fly.mpi-cbg.de/preibisch/nm/CUDA_
code_conv3d.zip). Newer versions will be hosted using github, announcements will be done on the github
page (https://github.com/fiji/spimreconstruction) and on the Fiji wiki (http://fiji.sc/Multi-View_
Deconvolution).

The simulation of multi-view data (Online Methods) and the 3d-rendering as shown in main text figure 2a
are implemented in ImgLib2.17 The source code for the simulation is available on Github: https://github.

com/StephanPreibisch/multiview-simulation. The source code for the 3d volume rendering can be found
on Github as well https://github.com/StephanPreibisch/volume-renderer. Please note that the majority
of the 3d-rendering code is a fork of the volume renderer written by Stephan Saalfeld https://github.com/

axtimwalde/volume-renderer, the relevant class for rendering the sphere is net.imglib2.render.volume.

RenderNatureMethodsPaper.java
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