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Quantitative Determination of Spatial Protein-Protein Correlations
in Fluorescence Confocal Microscopy
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ABSTRACT To quantify spatial protein-protein proximity (colocalization) in paired microscopic images of two sets of proteins
labeled by distinct fluorophores, we showed that the cross-correlation and the autocorrelation functions of image intensity con-
sisted of fast and slowly decaying components. The fast component resulted from clusters of proteins specifically labeled, and
the slow component resulted from image heterogeneity and a broadly-distributed background. To better evaluate spatial prox-
imity between the two specifically labeled proteins, we extracted the fast-decaying component by fitting the sharp peak in
correlation functions to a Gaussian function, which was then used to obtain protein-protein proximity index and the Pearson’s
correlation coefficient. We also employed the median-filter method as a universal approach for background reduction to minimize
nonspecific fluorescence. We illustrated our method by analyzing computer-simulated images and biological images.
INTRODUCTION
Protein-protein interactions are of great importance in many

biological processes and functions. Fluorescence microscopy

is an essential tool in biological research and is often used to

identify interacting proteins. Due to limited resolution, it

is not yet possible to locate associated proteins directly.

Instead, colocalization between two fluorescently-labeled

proteins, referred to here as protein-protein proximity, is

widely used to map and quantify protein-protein interactions.

Protein proximity analysis in fluorescence microscopy typi-

cally involves a pair of dual color images, in which each

color labels one type of protein. A high level of colocalized

signals indicates close proximity of the two proteins of

interest, which may suggest interactions between them.

Development of computer technology has made the coloc-

alization analysis of digital images a fast and easily acces-

sible approach to study protein-protein interactions. Among

various strategies of colocalization analysis, one of the

simplest methods is to overlay the dual color (for example,

red and green images) and to assess the amount of overlaid

yellow pixels as the indication of interaction (1,2). Colocal-

ization can also be quantified by various approaches, such as

the Pearson’s correlation coefficient rp (3,4), the overlap

coefficient, and the Manders’ colocalization coefficients

(5), the intensity correlation quotient (6), automatic thresh-

olding method (7), and image cross-correlation spectroscopy

(ICCS) (8–11).

Ideally, quantitative colocalization analysis should be able

to find the fraction of the colocalized proteins in each

channel. However, most quantitative approaches are unable

to produce reliable estimation of this fraction even for

the simplest computer-simulated images. For example, the
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Manders’ colocalization coefficient of molecules labeled

with red dye Mred is defined to be the ratio of the integrated

intensity of colocalized red pixels to the total intensity of all

red pixels (5). This approach has the obvious drawback that

it almost always exaggerates the magnitude of colocalization

because of randomly overlapped red and green pixels. When

the number density of molecules is large, Manders’ coeffi-

cient approaches to one even for two completely uncorre-

lated images.

Biological images are heterogeneous, because specific

labeling is not spatially randomly distributed but instead

concentrated in discrete subcellular compartments, and cells

have spatial patterns and boundaries. Existing quantitative

methods can easily generate false colocalization values due

to image heterogeneity, because in colocalization analysis

one is comparing two images of the same cell, and thus

spatial similarities must exist to some extent. These similar-

ities may be counted as colocalization and the colocalization

value is therefore overestimated. In practice, one could

reduce the influence of image heterogeneity by cropping

the image and analyzing small areas, but the uncertainty of

the result will increase, as most quantitative methods are

by nature statistical and a smaller area results in a relatively

smaller sample size (11). Another important issue is back-

ground reduction. Various backgrounds, such as nonspecific

fluorescence and detector noises, are inevitable in fluores-

cence imaging. Although the influence of spatially white

random noise can be relatively easily measured and reduced

by numerical techniques (10,12), the nonspecific fluores-

cence is much more cumbersome to deal with. One could

reduce the contribution of nonspecific fluorescence by esti-

mating its statistical properties on control samples, and

then subtract it from the measured samples (12), but this

time-consuming method suffers from the large variability

of cells. The routinely used procedure to reduce background

is thresholding. The often arbitrarily chosen threshold,
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however, introduces great human bias in determination of

colocalization coefficients, which can be quite sensitive to

threshold values.

Among existing approaches, ICCS can find the portion of

colocalized molecules in each channel when image heteroge-

neity and background are negligible. In this article we

propose an improved version of ICCS, which was designed

to minimize the influence of image heterogeneity and

broadly distributed background. We observed that, in typical

images, the colocalization of proteins decreased drastically

when the alignment of the two images was shifted, although

there was also a slow-decaying component of correlation

caused by image heterogeneity and possibly broad back-

ground. We calculated the spatial correlation functions (with

respect to x, y shift) and extracted the short-range component

from the slow-decaying, long-range component. The former

component alone was used in valuating colocalization. False

colocalization, the result of image heterogeneity, was

effectively removed. In background reduction, rather than

choosing different threshold values for different images,

we employed the median filter technique to minimize non-

specific fluorescence. This technique provided a universal

approach for background reduction. We successfully applied

this method on both computer-simulated images and biolog-

ical images. The protein-protein proximity index (PPI)

values were proven to be able to yield good estimation to

the fraction of colocalized molecules.
METHODS

Fast-decaying component extraction

Images are analyzed following the steps below:

1. Perform alignment adjustment by shifting images to reach maximum

correlation. If the adjustment shift value is unreasonably large, however,

it may indicate that there is no colocalization, and the observed correla-

tion is only due to background and fluctuation.

2. Calculate the correlation functions of Gkl using Eq. 13.

3. Make a contour plot for each correlation function. Usually the fast-decay-

ing component Skl shows itself as a sharp peak on top of the background

Bkl if significant colocalization exists.

4. For each correlation function, choose a straight line through zero. The choice

of the direction of the line should make the shallow component drop gently,

so that the sharp and shallow components can be better distinguished.

5. Through the straight line, fit the correlation function values by a sum of

two Gaussian functions

f ðrÞ ¼ He�
ðr�r0Þ2

W2 þ Ke�
ðr�r0Þ2

B2 þ C; (1)
where r is the pixel shift along the line. W and B are the width of the sharp and

shallow component, respectively, and W< B. The Gaussian function was

selected to fit the sharp peak because the PSF can be well approximated to

this function. The Gaussian function also works well for the shallow

component. According to Eq. 15, a successful fit of the sharp peak due

to colocalization should yield W z full width at half-maximum of PSF.

We call this nonlinear fit a double-Gaussian fit.

6. The estimated PPI values are then given by the ratios among the fitted fast

component heights of the correlation functions
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Hkl

Pk ¼

Hll

(2)

and the Pearson’s coefficient

rp ¼
ffiffiffiffiffiffiffiffiffiffi
P1P2

p
:

We will illustrate the above procedures with the analysis of computer-simu-

lated images and biological images in later sections.

Median filter

We will show later in the article that low signal/noise ratio (SNR) may cause

error in PPI estimation. In this study we used a median filter to remove nonspe-

cific fluorescence to avoid using arbitrarily chosen threshold values. The

median filter is often used in image processing to remove the spatial white

noise. Typical high-resolution images show proteins labeled in clusters sur-

rounded by large areas of nonspecific background. In this condition, the

median filter background reduction method will estimate the background

value at each pixel by calculating the median value of an n� n square centered

at this pixel, with n being at least five times larger than the cluster size. We

propose that this large square size assures that the median value reflects the

background level, which can then be subtracted from the image. The resulting

images in our study were almost free from nonspecific background.

Computer simulation

We used computer simulation to generate images with known PPI to test the

method. In simulations, the intensity of simulated images was initially set to

all zero, and protein clusters were then thrown in as point sources, each generating

an intensity distribution according to a Gaussian PSF. The maximum intensity of

each molecule was varied according to the Poisson distribution. The number of

proteins was precisely controlled, and thus the exact PPI values were known. The

specifically labeled clusters distinguished themselves from the nonspecifically

labeled ones by that they were much brighter.The intensity ratio between a specif-

ically labeled cluster and a nonspecifically label one was set to ~5:1. Random

noise was generated by the absolute value of Gaussian random numbers.

Cell labeling and image acquisition

Examples are given for isolated heart myocytes, astrocytes from neonatal

mice in primary culture, and transfected human embryonic kidney 293 cell

(HEK 293T). Proteins were labeled with specific monoclonal (anti-mouse)

and polyclonal antibodies (anti-rabbit). Isolated cells were fixed with 4%

paraformaldehyde in 0.1 M Na2HPO4 and 23 mM NaHPO4 (pH 7.4) at

room temperature for 20 min, and permeabilized with 0.2% Triton-X 100.

Nonspecific binding was blocked for 30 min at room temperature using

10% goat or donkey serum in phosphate-buffered saline, pH 7.4, containing

0.2% Triton X-100 to permeabilize the cells. Double labeling was achieved

incubating the cells with polyclonal and monoclonal antibodies (5–10 mg/mL)

incubated overnight (at 4�C). Cells were washed, incubated (1 h, room

temperature) with secondary Abs Alexa 488 anti-rabbit IgG and Alexa 594

anti-mouse IgG1 (2 mg/mL), washed again and mounted with Prolong

(Molecular Probes, Eugene, OR). Stacks of images were typically acquired

by optically sectioning cells every 0.1 mm at 0.058 mm per pixel (see Figs.

2, 4, 6, and Fig. 7, later in article) or 0.029 mm per pixel (see Fig. 5, later

in article) with a confocal microscope using a 60�, 1.4 NA oil immersion

objective. Photomultiplier sensitivity was adjusted to avoid saturation.
THEORY

Model

We consider a pair of two-dimensional images with intensity

I1(x, y) and I2(x, y), labeling protein 1 and 2, respectively.

The intensity can be decomposed into four components,
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Ikðx; yÞ ¼ Ckðx; yÞ þ Fkðx; yÞ þ Nkðx; yÞ þ Rkðx; yÞ; (3)

where k ¼ 1, 2 and

1. Ck(x, y) (k ¼ 1, 2) is the interacting (colocalized) compo-

nent, resulting from molecules of protein k that are asso-

ciated with the other type of protein,

2. Fk(x, y) is the noninteracting component, generated by

free molecules of protein k,

3. Nk(x, y) is the product of nonspecific fluorescence, and

4. Rk(x, y) is the random noise.

Our goal is to find the fraction of interacting molecules for

both protein 1 and 2, described by PPI P1 and P2. For

simplicity we only discuss one-to-one binding (variable

binding stoichiometry was discussed in (10)), and the PPI

is then defined as

Pk ¼
nc

nc þ nfk

; (4)

where nc is the number of interacting (colocalized) molecules,

and nfk
(k¼ 1, 2) is the number of free molecules of protein k.

We consider each molecule as a point light source. If the

point-spread function (PSF) is p(x, y), the ith molecule gener-

ates a density distribution p(x � xi, y � yi)ti on the image,
rkl ¼
hdIkdIli
hIkihIli

¼ hdCkdCli þ hdFkdFli þ hdNkdNli þ hdRkdRli
ðhCki þ hFki þ hNki þ hRkiÞðhCli þ hFli þ hNli þ hRliÞ

; (9)
where ti is the intensity at position (xi, yi), whose value is

determined by various factors such as the quantum yield of

fluorophores, the collection efficiency, and the detector

gain. Any component J in Eq. 3, except for the random noise,

can be expressed as

Jðx; yÞ ¼
X

i

ti pðx � xi; y� yiÞ; (5)

where summation is over all molecules generating J. The

spatial average intensity is

hJi ¼ nhpit; (6)

where n is the number of molecules generating J. We use h.i
to denote spatial average and the overbar to denote the oper-

ation of averaging over molecules. If position of molecules

(xi, yi) is a random variable with probability distribution

f(x, y), the variance of J is

�
ðdJÞ2

�
¼n2t2

��
ðp � f Þ2

�
�hpi2

�
þ n
��

p2
�
t2 �

�
ðp � f Þ2

�
t2
�
;

(7)

where
ðp � f Þðx; yÞh
X
ðu;vÞ

pðu; vÞf ðx � u; y� vÞ

is the convolution of the PSF p(x, y) and the spatial distribu-

tion f(x, y) of molecules. The first term in the right-hand side

of Eq. 7 accounts for the spatial distribution of molecules. In

the special case that the spatial distribution is uniform, we

have (p*f)(x, y) ¼ hpi, and

�
ðdJÞ2

�
¼ n

��
p2
�
t2 � hpi2t2

�
: (8)

The assumption

n�1f
�
ðdJÞ2

��
hJi2

is essential to image correlation spectroscopy (ICS) (10,12).

From Eqs. 7 and 8, one can see that this assumption is only

valid when the spatial distribution of molecules is uniform

(homogeneous image). In typical fluorescence images,

image heterogeneity produces significant effects, and must

be taken into account.

Principle of ICCS

The correlation coefficients are defined as
where k, l ¼ 1, 2. In this definition, the product of mean

values rather than covariance is used in the denominator

for convenience to derive PPI. Note that this definition can

give correlation coefficients >1. ICCS use

Pkz
rkl

rll

(10)

to estimate P1 and P2. For short-ranged PSF p, we have

hp2i[ hpi2. Under the assumption that the spatial distribu-

tions of proteins of interest are uniform, and neglecting

nonspecific fluorescence and random noise, the correlation

coefficients can be formulated as

rkk ¼
�
p2

k

�
t2
k�

nc þ nfk

	
ðhpki tkÞ2

;

r12 ¼
nchp1p2i��

nc þ nf1

	�
p1

����
nc þ nf2

	�
p2

��: (11)

The PPI are then estimated by
Biophysical Journal 98(3) 493–504
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Pkz
nc

nc þ nfk

hp1p2ihpli
hp2

l ihpki
tl

2

t2
l

: (12)

Comparing the above equation to Eq. 4, one can see that

the accuracy of the estimate needs a sharp distribution of t1
and t2, and also p1(x, y) z p2(x, y). Various factors, notably

the counting noise of detector, may cause a distribution of t1
and t2 and thus cause an underestimation of PPI. In usual

dual-color fluorescence microscopy, the PSFs of two chan-

nels are practically equal. However, when threshold is

applied, p1 and p2 can be effectively changed. Unequal

PSF in each channel may also produce distorted results in

ICCS.
Correlation function and background reduction

We define correlation function with varying pixel shift (u, v)

as

Gklðu; vÞ ¼
hdIkðx; yÞdIlðx þ u; y þ vÞi

hIkihIli
; (13)

where G11 and G12 are the autocorrelation functions, and G12

is the cross-correlation function. Note that Gkl(0, 0) ¼ rkl.

Random noise, nonspecific fluorescence, and image heteroge-

neity all have their influence on the correlation functions.

Random noise can be greatly reduced by image processing

techniques such as deconvolution and the median filter. One

can also measure the mean value and the variance of random

noise directly and perform background correction according

to these values. Because random noise is not spatially corre-

lated, the contribution of its variance in Eq. 9 can also be

eliminated by extrapolation (10,12), because

hdRkðx; yÞdRlðx þ u; y þ vÞih0

when (u, v) s 0, one can use limðu;vÞ/0Gklðu; vÞ to calculate

rkl and eliminate the variance term of random noise. Nonspe-

cific fluorescence is much more difficult to deal with. Unlike

random noise, its statistical properties depend on the partic-

ular cells under observation and are hard to reliably predeter-

mine, especially when direct labeling is used. Nonspecific

fluorescence usually has lower intensity than specific fluores-

cence and can be reduced by thresholding. In this article, we

use the median filter technique to minimize nonspecific fluo-

rescence.

One can observe that, as the alignment of the two images

is shifted, the magnitude of colocalization decreases sharply,

although there is another component decaying much more

gently. This intuition can be formulated mathematically as

follows: If the components in Eq. 3 are mutually indepen-

dent, and hR1(x, y)R2(x þ u, y þ v)i ¼ 0 when (u, v) s 0.

Using fC(x, y), fFk
ðx; yÞ, and fNk

ðx; yÞ to denote the spatial

distribution of colocalized proteins, noninteracting proteins,

and nonspecifically labeled molecules in the kth channel

(k ¼ 1, 2), respectively, then we have
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G12ðu; vÞ ¼
1

hI1ihI2i
ðS12ðu; vÞ þ B12ðu; vÞÞ þ const; (14)

where

S12ðu; vÞ ¼ nc t1 t2 hp1ðx; yÞ p2ðx þ u; y þ vÞi; (15)

and

B12ðu; vÞ ¼ ncðnc � 1Þ t1 t2 hðp1 � fCÞðx; yÞ ðp2 � fCÞ
ðx þ u; y þ vÞi þ nf1

nf2
t1 t2��

p1 � fF1

	
ðx; yÞ

�
p2 � fF2

	
ðx þ u; y þ vÞ

�

þ nn1
nn2

t1 t2

��
p1 � fN1

	
ðx; yÞ�

p2 � fN2

	
ðx þ u; y þ vÞ

�
; ð16Þ

where nnk
is the number of molecules generating nonspecific

fluorescence in channel k. Because in a confocal microscope

the PSF is short-ranged, and the spatial distributions of the

molecules fC, fFk
, and fNk

typically have much broader distri-

bution, S12 is much narrower than B12. Therefore, one has

a fast-decaying component S12 and a slow-decaying compo-

nent B12. (If, however, the spatial distribution of molecules is

comparable or even narrower than the PSF, one should not

expect colocalization analysis to provide accurate informa-

tion about protein-protein correlation.) Nonlinear fitting

techniques can then be used to extract the component S12.

Similarly, one can decompose the autocorrelation functions

into a fast-decaying component Skk and a slow-decaying

component Bkk (k ¼ 1, 2).

Assuming hRki � hIki, the correlation coefficients can be

estimated by

Pkz lim
ðu;vÞ/0

S12ðu; vÞhIki
Sllðu; vÞhIli

z
nc

nc þ nfk
þ nnk

hp1p2ihpki
hp2

kihpli
tk

2

t2
k

:

(17)

This equation is very similar to Eq. 12, except that we only

use the fast-decaying component Skl in correlation functions

to derive PPI. The Pearson’s correlation coefficient is esti-

mated by

rph
ffiffiffiffiffiffiffiffiffiffi
P1P2

p

z
ncffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

nc þ nf1
þ nn1

	�
nc þ nf2

þ nn2

	q hp1p2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp2

1ihp2
2i

p

� t1 t2ffiffiffiffiffiffiffiffi
t2
1 t2

2

q
:

(18)

We have not considered that proteins tend to form clusters,

which may have size comparable to the PSF. In this case,

the above discussion can still be applied by approximating

each cluster to be a single point source. The maximum inten-

sity t for each cluster is then a function of the number of

labeled molecules inside the cluster, and ts of the specific

component is [tn of the nonspecific component, because
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the nonspecific labeling occurs with much lower probability.

The PSF convolutes with the spatial distribution within

a cluster, generating an effective PSF of that cluster. As an

approximation, we assume that, in image k, all clusters

have the same effective PSF pk; Eq. 17 needs to be slightly

modified as

Pkz
nc

nc þ nfk
þ nnk

hp1p2ihpki
hp2

kihpli
tk

2

t2
k

1 þ SNR�1
k

1 þ SNR�1
l

: (19)

SNR is what we call specific-to-nonspecific ratio defined as

SNRk ¼
hCki þ hFki
hNki

: (20)

The Pearson’s correlation coefficient rph
ffiffiffiffiffiffiffiffiffiffi
P1P2

p
remains

the same as in Eq. 18. One can see from Eq. 19 that the esti-

mated PPI is a good approximation to the real values only if

both images have negligible nonspecific components, or

SNR1 z SNR2. If the two images have a high level of

nonspecific labeling and the SNR values are significantly

different, then the PPI estimation is skewed, though the
Pearson’s correlation coefficient rp is not affected. In this

case, background reduction process, which is discussed in

the next section, has to be done before calculation of PPI.
RESULTS

Computer-simulated images

Many simulated images were analyzed and we show two

typical examples in Fig. 1. A pair of images with a spatial

pattern and high SNR z 10 (very little nonspecific fluores-

cence) are shown in Fig. 1, A and B. Their overlay is dis-

played in Fig. 1 C. The real PPI values are PA ¼ 0.20 and

PB ¼ 0.71. Fig. 1 D shows the landscape of the cross-

correlation function (mesh), which consists of two clearly

distinguishable components—a shallow background reflect-

ing the spatial pattern and a sharp peak on top that accounts

for colocalization. The landscape is also shown in Fig. 1 E
as a contour plot, together with a straight line (dotted),

through which the nonlinear fit is performed. The cross-corre-

lation values through the line were nicely fitted by the sum of
FIGURE 1 Analysis of computer-simulated images.

(A and B) Pair of simulated images with known PPI values

and high SNR. (C) Overlay of images from A and B. (D)

Three-dimensional plot of the cross-correlation as a function

of pixel shift (PxSh). The peak at the center is due to coloc-

alization and the rest to the nonuniform pattern. (E) Two-

dimensional contour plot of the cross-correlation function.

The straight line (dotted) through the center shows where

the double-Gaussian fit is performed. (F) Double-Gaussian

fit of the cross-correlation function (normalized). The height

of the sharp peak, together with the heights of the sharp

peaks on autocorrelation functions (not shown in this

figure), are used to estimate the PPI values. The estimation

is in excellent agreement to the known values. See Table 1.

(G and H) Simulated images resulted from adding unequal

amount of nonspecific background to A and B. (I) Overlay

of images from G and H. (J) Three-dimensional plot of the

cross-correlation function of the median-filtered images. (K)

Two-dimensional contour plot of the cross-correlation func-

tion. (L) Double-Gaussian fit along the straight line shown

in K. The sharp peaks are used to generate better-estimated

PPI values than previous approaches. See Table 2.

Biophysical Journal 98(3) 493–504



TABLE 1 Comparison of colocalization analysis methods for

simulated images with high SNR in Fig. 1, A and B

PPI A to B PPI B to A Correlation

Real value 0.20 0.71 0.38

Pearson’s coefficient N/A N/A 0.73

Overlap coefficient 0.13 5.11 0.83

Manders’ coefficient 0.98 1.00 N/A

Costes’ approach 1.00 0.96 N/A

ICCS (image scrambled) 0.56 0.94 N/A

This article 0.22 0.75 0.41
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two Gaussian functions, illustrated in Fig. 1 F. The same

procedure were repeated for the autocorrelation function of

each image, and the fitted height of the sharp peaks was

then used to calculate the estimation of PPI. The result was

PA ¼ 0.22 and PB ¼ 0.75—in excellent agreement with the

real values. Without decomposition of the fast and the slow

components, however, the PPI values would be exaggerated

by the spatial pattern: PA¼ 0.56 and PB¼ 0.94 (calculated by

ICCS with image scrambling (11)). This proves that our

method was very effective in removing the influence of image

heterogeneity. In Table 1, results of the PPI method and other

previous methods are compared (the overlap coefficient and

the Manders coefficient were calculated by the Just Another

Colocalization Plugin (http://rsbweb.nih.gov/ij/plugins/track/

jacop.html); calculation in ICCS used image scrambling

(11)). One can see that previous methods all greatly exag-

gerate colocalization because of the same spatial pattern the

two images have.

To test the method under the influence of nonspecific fluo-

rescence, we used two images with different level of nonspe-

cific background (shown in Fig. 1, G and H). The SNR values

were 0.16 for Fig. 1 G and 7.0 for Fig. 1 H, whereas the real

PPI values were unchanged from the previous example. If

background reduction were not performed, our method would

yield PG ¼ 0.12 and PH ¼ 1.20, failing to give reasonable

estimate for PPI; however, the Pearson’s correlation coeffi-

cient rp ¼ 0.36 would still be an excellent estimation (the

real value is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:20� 0:71
p

z0:38), as predicted by the theory.

The median filter was able to remove most of the background,

and the estimated PPI values of the median-filtered images

were PG ¼ 0.31 and PH ¼ 0.49, close to the real values. In

Table 2, we again compare the PPI method to other methods.

One can still see that previous methods usually exaggerate

colocalization due to image heterogeneity.
TABLE 2 Comparison of colocalization analysis methods for

simulated images with low SNR in Fig. 1, J and K

PPI J to K PPI K to J Correlation

Real value 0.20 0.71 0.38

Pearson’s coefficient N/A N/A 0.54

Overlap coefficient 0.12 3.33 0.64

Manders’ coefficient 0.83 0.84 N/A

Costes’ approach 0.72 0.68 N/A

ICCS (image scrambled) 0.51 0.57 N/A

This article 0.31 0.49 0.41
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We were able to make our simulation more realistic by

using real biological images as the layout of computer simu-

lation. In Fig. 2, A and B we display a pair of biological

images of a mouse heart cell where the ryanodine receptor

(RyR) and the estrogen receptor a (ERa) were independently

labeled. This pair of images (cropped) will be used as the first

example in the analysis of biological images in this article

(see Fig. 4), in which we will show that RyR and ERa do

not colocalize. In computer simulation, the protein clusters

were distributed according to the intensity distribution of

the biological image used as the layout, producing a simu-

lated image that resembles the biological image on which

the simulation was based. In Fig. 2, D and E, we show the

simulated images using Fig. 2, A and B as their layouts,

respectively. Although colocalization does not exist in the

original biological images, one can add colocalization in

computer simulations. The amount of artificial colocalization

can be precisely controlled, and the simulated images can be

used to test colocalization analysis methods. In Fig. 3 A, we

show the performance of several quantitative colocalization

analysis methods over a broad range of colocalization values.

The concentration ratio of two species also varies greatly. It

is obvious that the method described in this article produced

the best results, whereas other methods all tend to exaggerate

the value of colocalization, especially when the colocaliza-

tion value is low. We have mentioned that the choice of

the straight line in the contour plot should follow the direc-

tion where the shallow component drops slowly. In Fig. 3

B, line 1 (solid) satisfies the above criterion, whereas line 2

(dash) does not. Fig. 3 C shows that fitting along line 1 yields

a better result than line 2, and that the PPI result is not sensi-

tive to the length of the fitting line.
Biological images

For biological images, we first show an example of two

labeled proteins that show no evidence of being associated.

We selected in a mouse heart cell the RyR that localized in

the terminal cisternae of the sarcoplasmic reticulum (14)

(Fig. 4 A, after cropping and processed by the median filter)

and the ERa that is located in different compartment along

the transverse T-tubules (15) (Fig. 4 B, after cropping and

processed by the median filter). The distribution of proteins

in these images clearly formed a spatial pattern of the

T-tubules. Very little colocalization is shown in the overlay

(Fig. 4 C), contrary to what existing quantitative methods

predicted (Table 3). In Fig. 4, D–I, we show correlation func-

tions of the images, and one can see that only autocorrela-

tions show sharp peaks (the fast component), whereas the

cross-correlation does not, indicating that the colocalization

identified by other methods is not real but caused by image

heterogeneity. This is further confirmed by Fig. 4, J–L,

where the nonlinear fit nicely identified the sharp component

in the autocorrelation functions, but failed to find it in the

cross-correlation function. We forced the double-Gaussian

http://rsbweb.nih.gov/ij/plugins/track/jacop.html
http://rsbweb.nih.gov/ij/plugins/track/jacop.html


FIGURE 2 Computer-simulated images based on real

biological images. (A) Image (1600 � 1600) of a heart

cell where the ryanodine receptor (RyR) was labeled. (B)

Image (1600 � 1600) of the same cell where the estrogen

receptor a (ERa) was independently labeled. (C) Overlay

of images from A and B. (D and E) Computer-simulated

images based on A and B, respectively. PPI was set to

PD ¼ 0.4 and PE ¼ 0.2. (F) Overlay of images from D

and E.
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fit by fixing the width of the sharp component to be that of

the autocorrelation functions, and obtained PA z 0.08 and

PB z 0.06.

Our second example illustrates the use of a median filter as

an effective background reduction method. Fig. 5 shows the

analysis of two images of a mouse heart cell where two

different proteins that are known to be associated, RyR

and a1C calcium channel (a1C), were separately labeled

(14) (RyR in Fig. 5, A and G, and a1C in Fig. 5, B and H).
The overlay of the images (Fig. 5, C and I) cannot decisively

tell us whether colocalization exists. The original two images

(Fig. 5, A and B) had very different SNRs, and the applica-

tion of the PPI method (Fig. 5, D–F) yielded unrealistic

PPI values: PA ¼ 0.33 for RyR, and PB ¼ 1.21 for a1C.

The estimated Pearson’s correlation coefficient was rp ¼
0.63. After median filter processing (Fig. 5, G and H), the

nonspecific fluorescence in the images were removed, and

the PPI method yielded reasonable results: PG ¼ 0.55 for
FIGURE 3 Analysis of computer-simulated images based on

biological images. (A) Comparison of quantitative colocalization

analysis method over a broad range of colocalization value and

concentration ratio, for computer-simulated images using Fig. 2,

A and B, as layout. The set (PRyR, PERa) values are (0, 0), (0.1,

0.9), (0.2, 0.1), (0.4, 0.2), (0.3, 0.6), (0.4, 0.2), (0.6, 1), (0.8,

0.4), and (1, 0.8). Results of a better method should form a line

closer to the Set PPI ¼ Calculated PPI value (dash). (B) Contour

plot of the cross-correlation function of one of the simulated

images. Double-Gaussian fit could be performed along either line

1 (solid) or line 2 (dash). (C) Impact of fitting line choice to PPI

result. The length of fitting line has little effect, but one needs to

choose line 1 to obtain a better estimate to the real PPI value.

Biophysical Journal 98(3) 493–504



FIGURE 4 Analysis of images of a heart cell from

mouse where ryanodine receptor (RyR) and estrogen

receptor a (ERa) were independently labeled. (A) Cropped

image (578 � 578) of RyR channel. See Fig. 2 A for full

image. (B) Cropped image (578 � 578) of ERa channel.

See Fig. 2 B for full image. (C) Overlay of A and B.

(D–F) Three-dimensional plots of the cross-correlation

and autocorrelation as functions of pixel shift. (G–I)

Two-dimensional plots of the cross-correlation and auto-

correlation functions, and the line (dotted) through which

the nonlinear fit is performed. (J–L) Fitting the cross-corre-

lation and autocorrelation function along the line to the sum

of two Gaussian functions. The cross-correlation function

does not have a sharp peak, indicating that colocalization

is nonexistent. See Table 3.
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RyR and PH ¼ 0.76 for a1C (Fig. 5, J–L). After the median-

filter processing, the Pearson’s correlation coefficient was

estimated to be rp ¼ 0.64. This value almost remained

unchanged compared to the value before the median-filter

processing.

In the third example, we show the analysis of images with

partial colocalization. In Fig. 6 we show two cropped images

from a mouse brain cell (astrocyte) where two different

proteins, the a-subunit of Ca2þ and voltage-dependent large
TABLE 3 Comparison of colocalization analysis methods on

images of ryanodine receptor (Fig. 4 A) and estrogen receptor

a (Fig. 4 B)

PPI A to B PPI B to A Correlation

Pearson’s coefficient N/A N/A 0.35

Overlap coefficient 0.15 1.66 0.50

Manders’ coefficient 0.81 0.81 N/A

Costes’ approach 0.59 0.49 N/A

ICCS (image scrambled) 0.32 0.37 N/A

This article 0.08 0.06 0.07
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conductance Kþ channels (MaxiK-a) and a-tubulin, were

separately labeled. These proteins are known to be associated

(16). The astrocyte cells have a complex shape, which might

induce false colocalization. The estimated PPI for original

images was PA ¼ 0.56 for MaxiK-a and PB ¼ 0.51 for

a-tubulin. After median-filter processing, the estimate PPI

dropped to PG ¼ 0.37 for MaxiK-a and PH ¼ 0.47 for

a-tubulin. The median-filter processing did not significantly

change the PPI values, because the original images had similar

SNRs. These results indicate that MaxiK-a and a-tubulin are

partially colocalized in astrocytes. Again, previous methods

tend to overestimate the value of colocalization. For example,

the ICCS with image scrambling yields PG ¼ 0.56 and PH ¼
0.59; the Costes’ approach yields PG ¼ 0.72 and PH ¼ 0.82;

and the Manders’ coefficients are MG ¼ 0.82 and MH ¼ 0.84.

The last example shown in Fig. 7 illustrates the analysis of

images that were double-labeled with c-Src tyrosine kinase

(Fig. 7 A) and serotonin (5-HT) receptor subtype 5-HT2AR

(Fig. 7 B) in coexpressed HEK 293T. These proteins highly

colocalize to the cell membrane, facilitating functional



FIGURE 5 Analysis of images of a mouse heart cell

where two different proteins were independently labeled.

(A) Cropped image (1250 � 1250) of ryanodine receptor

(RyR) channel. (B) Cropped image (1250 � 1250) of

a1C calcium channel (a1C). (C) Overlay of A and B.

(D–F) The cross-correlation function and the nonlinear fit

as described in Fig. 1; estimated PPI is 0.33 for RyR and

1.21 for a1C, and Pearson’s coefficient is 0.63. (G–L)

Equivalent analysis after median filter background reduc-

tion. PPI is 0.55 for RyR, 0.76 for a1C, and Pearson’s coef-

ficient is 0.64.
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coupling (17). In Fig. 7, A–C, we show images processed by

the median-filter method, and the PPI values were estimated to

be PA¼ 0.72 for c-Src and PB¼ 0.91 for 5-HT2AR. The Pear-

son’s coefficient was 0.81. Colocalization is not necessarily

homogeneous inside cells. In Fig. 7, G–I, we roughly removed

the membrane part of the HEK 239T cell, and the remaining

area was found to have lower PPI values: PG ¼ 0.42 for

c-Src and PH¼ 0.55 for 5-HT2AR. The Pearson’s coefficient

diminished to 0.48. These results suggest that the association

between 5-HT2A receptors and c-Src is more likely to happen

on HEK 239T membranes. Some other methods may not be

able to detect the above difference, because they also give

fairly high estimates for the interior region. For example,

the Manders’ coefficients are MA z MB z 0.9 for uncropped

images and MG z MH z 0.8 for cropped ones. The difference

is too small to draw a decisive conclusion.
SUMMARY AND DISCUSSION

In this article, we have presented a novel method to analyze

protein-protein proximity, also referred as colocalization, in

dual-color fluorescence microscopic images. Colocalization
analysis is widely used in biological research but existing

methods have not been satisfactory. For example, the overlay

method is limited by its qualitative nature and biased by the

user selection of appropriate threshold. Other quantitative

strategies involve using scatter plots or second-order histo-

grams (4), which also rely on visual identification of correla-

tion or repulsion. Many quantitative approaches have also

been proposed, but they all have their limitations. Pearson’s

correlation coefficient rp is readily applicable to colocaliza-

tion analysis (3,4), but it is difficult to interpret small or nega-

tive value of rp, and one value of rp is incomplete to quantify

the colocalization of two species. The overlap coefficient and

the Manders’ colocalization coefficient (5) were proposed by

Manders and collaborators to quantify colocalization in both

species. However, the overlap coefficient has the drawback

that it only produces reasonable result when the two channels

have similar intensity, and the Manders’ coefficient is very

sensitive to background noise (18). Li et al. developed the

intensity correlation quotient to quantify both correlation

and repulsion (6), but similar to the Pearson’s coefficient,

this quotient is also a single value that changes nonlinearly

with respect to the portion of colocalized molecules and
Biophysical Journal 98(3) 493–504



FIGURE 6 Analysis of images of a mouse brain cell

(astrocyte) where two different proteins were independently

labeled. (A) MaxiK-a channel (1520� 1520). (B) a-tubulin

channel (1520 � 1520). (C) Overlay of A and B. (D–F)

Cross-correlation function and the nonlinear fit; estimated

PPI is 0.56 for MaxiK-a, 0.51 for a-tubulin, and Pearson’s

coefficient is 0.63. (G–L) Equivalent analysis after median-

filter background reduction. PPI is 0.37 for MaxiK-a, 0.47

for a-tubulin, and Pearson’s coefficient is 0.42.
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thus is hard to interpret, especially when the absolute value

of the quotient is small. Costes et al. (7) invented an auto-

matic threshold method, which lacks solid theoretical foun-

dation, and was reported to fail to give a fair estimate

when the molecule density was high (10).

Fluorescence correlation spectroscopy has found its appli-

cations in various scientific studies. Image correlation spec-

troscopy (ICS) was introduced as a more rapid alternative to

fluorescence correlation spectroscopy (19). ICS measures

spatial variations of fluorescence images rather than temporal

fluctuations in the sample, and it has been applied to the

measurement of protein aggregation in the plasma membrane

(12,20). Cross-correlation analysis was incorporated with

ICS, termed as image cross-correlation spectroscopy (ICCS),

to analyze protein-protein colocalization (8,9). According to

a recent summary by Comeau et al. (10), ICCS is an excel-

lent strategy when applied to homogeneous images with

relatively high magnitude of colocalization, but failed on

heterogeneous images and images with low colocalization,

because of the difficulty in the three-dimensional Gaussian
Biophysical Journal 98(3) 493–504
nonlinear fit. These authors extended the use of ICCS by

scrambling and padding the images (11). This approach

can make the Gaussian fit easier to perform but is vulnerable

to false colocalization induced by image heterogeneity.

In this article, we showed that the correlation functions

usually consist of a fast decaying component corresponding

to colocalization and a slowly changing component due to

heterogeneity and nonspecific fluorescence. The mathematical

formalization validated the usage of ICCS on heterogeneous

images. For inhomogeneous images, we introduced double-

Gaussian nonlinear fit to extract the fast decaying component.

The double-Gaussian fit substituted the more difficult and

unstable three-dimensional nonlinear fit, performed on a line

where the fast and slow component were easy to distinguish.

Compared to existing approaches, our method has the

following advantages:

First, one is able to calculate the PPI that has a clear bio-

logical meaning: They are an excellent approximation to the

fractions of colocalized molecules, if nonspecific fluores-

cence is negligible.



FIGURE 7 Analysis of images of a human embryonic

kidney 293 cell (HEK 293T) where c-Src tyrosine kinase

and serotonin receptor subtype 5-HT2AR were coexpressed

and independently labeled. (A) c-Src channel after median

filter processing (1070� 1070). (B) 5-HT2AR channel after

median-filter processing (1070 � 1070). (C) Overlay of A

and B. (D–F) Cross-correlation function and the nonlinear

fit; estimated PPI is 0.72 for c-Src, 0.91 for 5-HT2A recep-

tors, and Pearson’s coefficient is 0.81. (G–L) Equivalent

analysis after the cell membrane was removed. PPI is 0.42

for c-Src, 0.55 for 5-HT2AR, and Pearson’s coefficient is

0.48. Lower PPI values inside the cell indicate that c-Src

and 5-HT2AR are more strongly colocalized on cell

membrane.
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Second, our method is free from false identification of

colocalization induced by image heterogeneity. This is partic-

ularly important when there is no colocalization or the coloc-

alization value is low.

Third, the median-filter method provides a universal and

stable approach for background reduction. The PPI method

can serve as a powerful microscopy tool to map and quantify

association of macromolecular complexes and their dynamic

changes in biological processes.

The strategy we present in this article is not intended as

a substitute for Förster resonance energy transfer (FRET).

FRET is much harder to implement but has the advantage

that it can achieve resolution well below the conventional

microscopy diffraction limit. FRET is mainly used in expres-

sion systems where the expressed proteins are tagged with

fluorophores (e.g., cyan fluorescent protein or yellow fluo-

rescent protein). In native tissues, proteins are typically first

tagged with a primary antibody and subsequently with

a secondary fluorescent antibody. A much better approach

is to use fluorescent-tagged antibodies, but they are not

always available. In any case, one would measure FRET
between two fluorescent primary antibodies or secondary

antibodies, which could introduce uncertainty (21,22).

This work was supported by National Institutes of Health grants No.

HL088640 (to E.S.), No. HL054970 (to L.T.), and No. HL089876 (to

M.E.), and American Heart Association Fellowship No. 0825273F (to R.L.).
REFERENCES

1. Fox, M. H., D. J. Arndt-Jovin, ., M. Robert-Nicoud. 1991. Spatial and
temporal distribution of DNA replication sites localized by immunoflu-
orescence and confocal microscopy in mouse fibroblasts. J. Cell Sci.
99:247–253.

2. Dutartre, H., J. Davoust, ., P. Chavrier. 1996. Cytokinesis arrest and
redistribution of actin-cytoskeleton regulatory components in cells
expressing the rGTPase CDC42Hs. J. Cell Sci. 109:367–377.

3. Manders, E. M., J. Stap, ., J. A. Aten. 1992. Dynamics of three-dimen-
sional replication patterns during the S-phase, analyzed by double
labeling of DNA and confocal microscopy. J. Cell Sci. 103:857–862.

4. Demandolx, D., and J. Davoust. 1997. Multicolor analysis and local
image correlation in confocal microscopy. J. Microsc. 185:21–36.

5. Manders, E. M., F. J. Verbeek, and J. A. Aten. 1993. Measurement
of colocalization of objects in dual-color confocal images. J. Microsc.
169:375–382.
Biophysical Journal 98(3) 493–504



504 Wu et al.
6. Li, Q., A. Lau, ., E. F. Stanley. 2004. A syntaxin 1, Ga(o), and N-type

calcium channel complex at a presynaptic nerve terminal: analysis by

quantitative immunocolocalization. J. Neurosci. 24:4070–4081.

7. Costes, S. V., D. Daelemans, ., S. Lockett. 2004. Automatic and

quantitative measurement of protein-protein colocalization in live cells.

Biophys. J. 86:3993–4003.

8. Wiseman, P. W., J. A. Squier, ., K. R. Wilson. 2000. Two-photon

image correlation spectroscopy and image cross-correlation spectros-

copy. J. Microsc. 200:14–25.

9. Costantino, S., J. W. Comeau, ., P. W. Wiseman. 2005. Accuracy and

dynamic range of spatial image correlation and cross-correlation

spectroscopy. Biophys. J. 89:1251–1260.

10. Comeau, J. W., S. Costantino, and P. W. Wiseman. 2006. A guide to

accurate fluorescence microscopy colocalization measurements. Bio-
phys. J. 91:4611–4622.

11. Comeau, J. W., D. L. Kolin, and P. W. Wiseman. 2008. Accurate

measurements of protein interactions in cells via improved spatial image

cross-correlation spectroscopy. Mol. Biosyst. 4:672–685.

12. Wiseman, P. W., and N. O. Petersen. 1999. Image correlation spectros-

copy. II. Optimization for ultrasensitive detection of preexisting

platelet-derived growth factor-b receptor oligomers on intact cells.

Biophys. J. 76:963–977.

13. Reference deleted in proof.
Biophysical Journal 98(3) 493–504
14. Scriven, D. R. L., P. Dan, and E. D. W. Moore. 2000. Distribution of
proteins implicated in excitation-contraction coupling in rat ventricular
myocytes. Biophys. J. 79:2682–2691.

15. Ropero, A. B., M. Eghbali, ., E. Stefani. 2006. Heart estrogen receptor
alpha: distinct membrane and nuclear distribution patterns and regula-
tion by estrogen. J. Mol. Cell. Cardiol. 41:496–510.

16. Ou, J. W., Y. Kumar, ., L. Toro. 2009. Ca2þ- and thromboxane-depen-
dent distribution of MaxiK channels in cultured astrocytes: from micro-
tubules to the plasma membrane. Glia. 57:1280–1295.

17. Lu, R., A. Alioua, ., L. Toro. 2008. c-Src tyrosine kinase, a critical
component for 5-HT2A receptor-mediated contraction in rat aorta.
J. Physiol. 586:3855–3869.

18. Bolte, S., and F. P. Cordelières. 2006. A guided tour into subcellular
colocalization analysis in light microscopy. J. Microsc. 224:213–232.
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